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1. INTRODUCTION

This document is a preliminary report on a survey of the
factors affecting the performance of a filter. Although specifi-
cally directed at optical filters, most of the discussion is
quite general, applying to the propagation of any wave in a
medium with a spatially modulated response or susceptance. The
intent of this work is to examine the factors affecting filter
performance with a view toward perfecting filter design. This
effort began with a survey of the optical properties of materials
which could be used in a filter. The assumption was that ulti-
mate filter performance is primarily limited by materials
questions. During this survey the author quickly became aware of
the need to develop a rating system for material §roperties,
based on the relationships between filter performance and the
susceptance of the various parts of the filter. Thus it became
necessary to first establish this relationship, a task which

forms the main body of this work.

1.1 Design Needs

The filter design engineer is severely hampered if he does
not have the freedom to specify the susceptance (this implies the
refractive index) of the medium at a given location. A
dielectric can be tailored to an arbitrary specification between
the limiting value of the dielectric constants of a given set of
materials by making an appropriate solution of these materials.
Unfortunately there is no ready formula for the ideal solution
(this question is addressed in Paragraph 2.1) and no solution
will be perfectly homogeneous. The impact of this fact on wave

propagation is discussed in Paragraph 2.2.
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Bragg filters are based on the interference effects upon
wave propagation due to spatial variations in the susceptance of
the medium. Traditional optical filters have modulated the
refractive index profile in discrete, discontinuous steps. The
index response between these steps is flat. This method achieves
great simplicity in both manufacture and design. The motivation
for this work is the production of a new type of filter--the
graded index filter. We define a graded index filter as one in
which the medium susceptance (and therefore the dielectric
constant) is smoothly and continuously varying, i.e., one in
which there are no sharp discontinuities or flat regions in the
susceptance. Currently a sinusoidal modulation is popular in

design.

Much of the impetus for the development of graded index
filters is based upon the speculation that the freedom to con-
tour the index profile at will should allow the design engineer
extra flexibility in the design of filters with ultra narrow
stop, or reflectance bands, the location of several such bands at
arbitrary frequencies, and the avoidance of absorption and/or
scattering associated with material discontinuities. The author
has uncovered nothing in this study to support these beliefs. On
the contrary, the analysis presented here suggests that details
of the modulation profile have little bearing on filter perfor-
mance in the frequency range for which most simple filters are

designed.

wave propagation in a periodic medium is governed primarily
by fundamental considerations without regard to the details of
the system in question (some of these fundamental features are
discussed in the Appendix). Consequently, a wide range of
systems which are usually treated as unique share important
features with optical filters. Examples are acoustic filters
(mufflers), electronic energy bands in solids, lattice dynamics,
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. optical filter problem can be gained by reviewing the large body
of work developed in these other related areas. In particular,
it is universally found that a periodic modulation of the medium

response will produce not just a single stop, or reflectance

- band, but a series of such bands with increasing frequency. In
solid-state band theory, these stop bands are referred to as band
gaps. The higher order band structure is related to the details
of the modulation profile. 1In the event a filter is designed for
a multi-octave frequency range, the details of the index contour

will become important.

1.2 Approach

The analysis adopted in the following review of filter per-
formance is analytic. The philosophy is that an analytic (in
contrast to a numerical) approach has advantages for conferring
insight on the essential physical parameters that determine
filter performance. In the process of pursuing this approach a
second goal developed: the application of analysis to optical
filter design, especially the design of continuous gradient
filters. A general procedure for designing a filter is given in
Figure 1.1, which is taken from a reference on the design of
filters in transmission lines.l! This report begins to lay the
groundwork for development of an optimum transfer function and a
determination of appropriate values for the filter parameters.
The author believes that this analysis will answer questions on
the effect of discontinuities and of continuously varying suscep-
tibilities on filter performance, and the degree to which an

ideal notch filter can be approximated.

An analytic approach has special advantages when a problem
becomes complex. An example is the extension of simple, one-

dimensional filters with purely real refraction indices to three-
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THE FLOWCHART OF FILTER DESIGN OPERATIONS

Definition of
filter spec.

y

Choice of
filter circuit ~

4

Construction of
transfer function
to meet filter spec. 3

y

Calculation of A
component values
in filter circuit 4

!

Analysis of filter
performance with
dissipation and
tolerances 5

Does
it meet the ¢
spec.?

NO

Construct and test
laboratory model

Figure 1. Approach to filter design used in transmission line
theory
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dimensional filters with complex susceptibilities. This problem
can be handled analytically by a resolvant, or Green's function
approach, The Green's function method is a generalization of the

concepts addressed in this report,

. Section 3 presents an overview of filters, of different
means of describing their performance, and of the diverse sub-
jects which share essential features. The critical conclusion of
Section 3 is that a complete description of the performance of a
filter may be obtained once the wave equation is solved over the

fundamental repeat region (unit cell) of the filter cascade.

The solution of the wave eguation is then discussed in Section 4,
with special emphasis on the two cases of special interest, step
function and sinusoidal modulation. These two cases are com-
pared, and some general observations are made about the behavior
of the solutions, particularly the appearance of stop and pass

bands.

Sections 5 and 6 discuss various means by which the solution
of the wave equation may be converted to an algebraic problem.
Algebraic procedures are especially useful in describing multiple
periodic filters, as well as terminations, junctions, and other
local departures from the periodic profile. They are a prime
analytic tool. The mathematical basis for Section 5 is given in

Appendix A.

Several candidates for optical filter materials are

discussed in Section 7, largely in terms of crystal structure and

lattice parameters, since these must be well matched to obtain a :gi{

minimal-defect solution. We call attention to the as-yet-little-
studied layered materials, in particular the transition metal
chalcogenides. Our conclusions and suggestions for future work
are given in Section 8. Although this report is largely the
result of an extensive literature review, every section contains

significant original contributions by the author.
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2. PRELIMINARY CONSIDERATIONS ON DIELECTRIC BEHAVIOR
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The following three sections will give a mathematical
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description of light propagation in an ideal medium. 1In this

¥
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section we comment on formulas appearing in the literature for

tailor-made dielectrics and on the effect of a material's imper-
fections on its ideal behavior.

2.1 Dielectric Constant of a Mixture

Before we examine how departures from an ideal profile will
affect the response of an inhomogeneous medium, we should first
obtain some insight into the dielectric behavior of a solution.
To our knowledge, this matter has not been adeqguately explored.
The dielectric constant of a material is a macroscopic property
with a nonlinear dependence on the molecular (microscopic)
polarizability. The reason for this nonlinearity is the
depolarizing response to an external field created at any discon-
tinuity in the susceptibility of the medium. Consequently,
accurate models of dielectric behavior must take account of the effect of
the surrounding medium on the microscopic susceptibility of a

material. Unfortunately, this behavior is very complex. We now

derive a general result for a multi-component dielectric mixture.

The relation of our result to earlier work and suggestions for
extensions follow.

We denote the applied electric field, the local effective
electric field, and the net polarization field respectively by E, ﬁ‘!ﬁ@
E', and P, We will model the medium by a solution of molecules e
with ellipsoidal shapes. The polarizability of a molecule of a
given species will be denoted aj. We have

E' = E + 47AP (2.1) R
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P =) p, = E a. (2.2)
i

or

P = (E + 47AP) ] o . (2.3)
i

Here pj is the induced dipole moment of a molecule of species i,
and A is a factor varying from 0 to 1, depending on the shape of
the ellipsoid. A = 1/3 for spheres. Our summations are actually
double summations, in which we sum over all the molecules of each
species, i.e., we use a suppressed notation. We may rewrite

Equation (2.3) to obtain

I oy = P/(E + 47AP), (2.4) L
i 2o
and T
(L -4rA ] o) P=E ] o . (2.5)
i i
We have

P=yE , (2.6) -
with the dielectric constant given by o

e =1+ 4y . (2.7) iiiﬂ

We may obtain our desired relations:

_ 1 (e - 1)
Z % T %« 71 = A) + Ae (2.8)
1
and
47 § a
e -1 = 1 1 (2.9)
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---------- . . - - - Ll = . - ~ - » .
ST, T Tt S e A e A SN S et RIS Cue T
EREALN Sy S e e . LI o . . . R BRSRS

G,



AR i AP AN it ol s gt

or

1+ 4n(l - A) L o
€ = L (2.10)
1—4ﬂAza.
i 1

These relations neglect permanent dipole moments. In fact,
most materials of interest in hard filters are polar; neverthe-
less our neglect of permanent dipole moments remains valid at
optical frequencies. 1In the intermediate infrared region the
permanent molecular dipoles can respond to the applied field, so

we must make the substitution

a; » oy + us /(3KT + b ngu?) (2.11)

for dipoles uj of series i with concentration nj at a tem-
perature T. In Equation (2.11), b is an empirical constant.

We obtain a relation between the macroscopic parameters e

and €1 and e for a two-component solution of molecular densities

ny; and ny by an iteration of Equation (2.8):
1 2

(ny + ny) Aejey, + (1 - A) (nye; + nyey) (2.13)

which leads to

n,a,e n,a,e
ea L llr 2272 (2.14)
11 7 "%

where
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a; = 1/(Ae;

When A = 1/3 and 0 we respectively obtain the relations for the
Clausius-Mossotti and “Drude," or more properly, Sellmeier models
given by Bottcherl and Jacobsson.2 We note that the simplified
form found in Equation (2.14) is only valid if A is the same for
both species. It can be extended to include a summation over

several species in a solution.

We can extend Equation (2.14) by induction, and give here an
illustration of the first step in the induction argument, a three-
component solution. We consider the solution to be composed of a
two~-component solution plus the third component, and use the
subscript o to refer to the two-component solution. Then from
Equation (2.14) we have

"o%°%0 * M3%3¢;

¢ = . (2.16)
no + n3a3

Again from Equation (2.14), we rewrite Equation (2.16) as

a, € +
(ny+n,) aonl 197509 + N353
n,a,+n.a
€ = 11 22 (2.17)
(n1+n2)aO + nje,g
Now
a, = (Aeo + 1 - A)-1 (2.18)
or
n,a,e,+n,a,e
17171 27272
a = 1/[A +1-A] . (2.19)
o nja;fn,a,
Consequently
( ) n, +n, ( o)
n, + ny,j)a_ = . 2.2
1 270 Kél(el 18] n + Kaz(ez-l)n2
10
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From Equation (2.15), we see that

‘ (n; + n2) aj = ma, + nya, . (2.21)

Substitution of Equation (2.21) in Equation (2.17) gives

3
g n;aje;
€ =1'__ . Q.E.D. (2.22)
y n:a, _::LZ-:
R oo
Clearly, we may iterate this argument to include any number of fiig.

species of the same A coefficient.

In general, €, x, and a will be complex. Equation (2.14) is
valid for complex dielectric constants, as may be seen from its o
derivation. Part of its utility is that it gives a result for B
complex dielectric constants without reference to the details of
the microscopic polarizability. From our derivation, we see that
Equation (2.14) should also include a reasonable amount of

dispersion, by letting e + e(w).

In Equation (2.14) we recover the value for a pure material
if either ny or ny » 0, as we should. In a mixture e is reduced
from a value given by a linear interpolation between e] and ¢
for A # 0 due to the interaction between molecules, To see this,

consider a solution when nj; = nj3. Then we find

2he e, + (1 = A) (e, + €,)
€ = 1 2 1 2 . (2.23)

2(1 - A) +A(€l+ €, )

Comparing this with (e; + €3)/2 we obtain the variation in e

from its value found from a linear interpolation, §e:

§e = . (2.24)

11
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We see that ée will increase with both A and €3 - €]. This is
consistent with experiment and the discussion given by
Jacobsson.2 However, part of Jacobsson's treatment contains

errors, since it is based on a faulty premise which we now

describe.

If an ellipsoid with dielectric constant e; is embedded in a
uniform medium of dielectric constant e) then a net simple dipole
field proportional to e; - €] will be added to the effective
field that would occur in the absence of the ellipsoid.3 Using
this result, Polder and van Santen?4 obtained the effective

dielectric constant for a dilute suspension of such spheres.

€ = €] + Ceyp(ez - €1)/[Be2 + (1 - A)e1] (2.25)

where C is the volume concentration of the ellipsoids. This

s
s
result is readily extended to include ellipsoids of varying ey
'
dielectric constant and shape. A similar result is found by el

Landau and Lifshitz for spheres.> However, these authors were
mindful of the difference between a dilute suspension and a
strong solution, noting that Equation (2.25) can only be taken as
an approximation for a solution at low concentrations. We may

attempt to extend Equation (2.25) by using the approximation
€ = g1 + CeNep - €1)/[Aep + (1 - A)e] , (2.26)

as Polder and van Santen in fact did, but this formula also
breaks down as C increases, as may be seen by comparison with

Equation (2.12) using C = ny/(n] + n3). Jacobsson ignores this
limitation.

Equation (2.26) is a macroscopic result. It pertains to
particles in a homogeneous background. We may well treat the

interaction between a molecule and distant molecules by an
average field,® but must be careful about our treatment of local

interactions. Jackson,6 shows that the Clausius-Mossotti result
(A = 1/3) should work well for distant interactions, with local

fields accounted for by a perturbation parameter s,

12
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A =1/3 + s . (2.27)

For symmetrical systems, such as cubic crystals and pure
amorphous materials, the various contributions which include s

cancel. This is why the Clausius-Mossotti equation is so useful.

Departures observed from the values predicted using
A = 1/3 are observed in bicomponent films.2 This may be due to
a lack of local isotropy, but could well be due to local depar-
tures from stoichiometry and voids. It is impossible to say
without a thorough characterization of the films. As can be seen
from Equation (2.25), voids can have a dramatic impact on the

dielectric constant,

The derivation leading to Equation (2.8) is inexact. A more
accurate formu’' tion can be obtained following the Onsager devel-
opment for sphe es.! In fact, we could use a statistical treat-
ment.l In our treatment we have swept statistical variations in
the local dielectric environment of a molecule under the rug,
burying the resulting parameter s in our parameter A. In other
words, our treatment 1is intended only as a model that will
include the effect of an inhomogeneous local environment.
However, we believe it gives a better picture than an uncritical
use of Equation (2.26). It cannot readily be extended to include
solutions of materials with different values for A. However,
Equation (2.8) should be adequate for our purposes. In fact,
until it is established that departures from the Clausius-Mossotti
relation are in fact due to molecular shape factors rather than
film preparation, we may well choose A = 1/3. For design pur-
poses it is probably best to use empirical values for the
dielectric constants of mixtures, since they are so heavily

dependent on fabrication processes.

13
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2.2 Rayleigh Scattering from Inhomogeneities in ¢

Local variations from the desired dielectric coefficient x

-
“a

will mar its performance. We are concerned here with random,

LPEN

local imperfections, rather than regular one-dimension discon-

ey

A

v
.l

tinuities in the dielectric profile. These imperfections will .

~*

x
L]

"

include voids, departures from stoichiometry due to lack of

s s
e
[}

DA AR)

R AF St R AL ARl e .l L KR

control during fabrication, departures from stoichiometry due to :

e e a"a
Il

e 4

compositional segregation following fabrication, surface rough-

. ness at film interfaces, impurities, density fluctuations in

. amorphous films, the occurrence of microcrystals in an amorphous
matrix, and polycrystalline films containing more than one phase, 4?1
E or randomly oriented crystals with anisotropic refractive indi- b;
L ces. We assume that all these imperfections, 1if they occur, will s
be small in size. This will allow us to make a Rayleigh scat-
tering approximation. Consequently we will not need to consider
the shape of the scattering centers, although except for the case
of voids we may easily extend our discussion to include centers :;

of any shape.’ Similarly, we will ignore gradations in the index E

profile of imperfections, and model them by spheres of uniform :i;
dielectric strength. A more accurate description will add little o

to our conclusions at the cost of great complications, since we
can account for most effects by choosing an effective radius, a,
for the scattering centers. We will also neglect coherence ';5'
effects. We denote the scattering cross section by og and the o
absorption cross section by o3. We let the local dielectric

constant of the medium be ey, and that of the imperfection be €j.

We have
. - 2
_ 8n 4 € €m 6
i m
and
€. - €
- i m 3 .
Oa = 47k Im -é—-+—2-e— a (2.29)
i m
14
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< amk | =T a7, (2.30) RS

assuming that the imaginary part of e, e" is small compared to
its real part, ¢'. Here )

is the wave vector in the medium surrounding the scattering

center corresponding to a freespace wavelength \g. We see that

—_— o~

3 (51 Y %%m) (%17 Gm)
2

3 (2.32)

Since we are considering a regime in which ka << 1, absorp-
tion will be important, and in fact will probably dominate. An

exception to this rule will again be the case of voids.

From Equation {(2.28) we see that scattering will be far more
severe in the optical region than in the infrared. Absorption
will also be more severe, although not proportionately. We will

assume that the density of scattering centers is sufficiently
low, so that we may restrict ourselves to single particle scat-

tering. The intensity at a depth z in the filter, I(z), will be
given by

I(z) = Ig exp|/dz nl(z) ggl2z), (2.33)
wnere I5 is the input intensity and
+ o4 . (2.34)

We see from Equation (2.29) that the total absorption per unit

length due to a given type of imperfection 1is proportional to the
fractional volume of scattering centers in the material. Thus for

small centers the relative importance of a given type of imperfection
” "

1s roughly proportional to C (¢y - ¢n), where C is the fractional

Iy
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volume of that type of impurity.

We now present models for the dielectric behavior of several

imperfections. Voids will have the strongest scattering for a
given size scattering center, but will not contribute to absorp-

tion. We have

e, =1 €. =0 . (2.35)

A tendency towards separation or decomposition of the solution
will drive both €y and gy toward e} or ep. In the limit of

complete separation we will have

€i * €2 + €m * €] . (2.36)

We may treat a partial decomposition in the same manner as a
variation in stoichiometry. Let

€ = Nje] + N2e2 . (2.37)

Then for a fractional change § in composition we will have

e = (n1el + npe2) + 6(e] - €2) (2.38)
so that
ei = §(eyl - €2) (2.39)
and
e, ~ €. = 6(51 - 82) . (2.40)

We expect § to be on the order of a few percent.

If the dielectric constant changes due to a change in phase,
or in the case of an anisotropic medium, to a change in orien-

tation, we model it as

16
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e; = eqn(l + &) (2.41)

so that

€. - € = + AE . (2042)

We expect that A may be on the order of several percent. There

may also be a small change in the dielectric constant at the
boundaries of grains in polycrystaline material or at film inter-
faces. Here also we expect a relations like those of Equations
(2.41) and (2.42), with the fractional volume of scattering centers
proportional to the surface to volume ratio of the grains or

films.
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3. WAVE PROPAGATION IN A PERIODIC STRUCTURE

All periodic structures act as filters to waves passing
through them, i.e., they have pass and stop bands. The problem
we wish to solve, the optical filtering properties of a material
with a modulated index of refraction, is very similar to other
problems in acoustics,l-5 electrical transmission lines,6:7

microwave waveguides,8-16 solid-state band theory,17-40 and lat-
tice dynamics.41'43 We can gain a great deal of insight from the

work done in these related areas. The first thing that becomes
apparent in comparisons with these other systems is that the stop
and pass bands do not depend greatly on the specific nature of
the wave in question; rather they simply arise from the regular
variation of the response of the transmitting medium to the

disturbance of the wave.

Procedures for analytic treatment of problems of this kind
are well developed. We now summarize them and give examples. We
will then comment on the possibilities for inversion, investi-
gating high-order band behavior, two and three dimensional calcu-
lations, and the similarities and differences between the
response of filters with slightly different index profiles.

3.1 Graphic Displays of Performance

The result of a calculation will be a curve., It may be a
transmission or reflection coefficient curve,44,45 displaying the
transmission coefficient, T, or reflection coefficient, R, versus
the incident wavenumber, k,., It may also be a dispersion
curve,46-50 displaying the real part of the frequency of the
incident wave, w, (which is equivalent to k,) versus the wave-
number in the medium, k. These two types of curves contain simi-
lar information, since attenuated transmission is accounted for

by a complex value for w, and we can easily plot the imaginary

part of w as well as its real part. When the attenuation is
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small, there are some advantages to using the dispersion curves
instead of reflection curves., The dispersion curves give a clear
picture of the pass and stop bands above the fundamental bands.
They give a good picture of behavior in three-dimensional
systems, are very useful in analyzing mode coupling and the den-
sity of states, or channel carrying capacity in a given frequency
range, Aw. Consequently dispersion curves are commonly used in

1 solid~-state physics and waveguide transmission problems.

Apparently this type of analysis has been relatively little used

in optics. Optical problems have more commonly been expressed in
terms of reflection and transmission coefficients, which have
advantages when absorption by the medium is large or when the
ratio of the filter thickness, t, to the length characterizing
its periodicity (unit cell length), d, is small. Since disper-
sion curves are useful in obtaining physical insight, we will

refer to dispersion curves in most of our discussion.

There are two basic starting points for solving wave
transmission problems. The first is a direct solution of the
partial differential equation (PDE) for the wave amplitude and
phase, 4. The second is a conversion from a PDE to a difference
equation, The difference equation approach is most useful when
the index modulation is large over short, well separated regions
(tight-binding approximation) or when the modulation is small
(nearly free case). In the latter case the difference equation
is obtained by a Fourier transformation of the PDE. Of course,
the direct solution of the PDE is most useful when the index
modulation over a given interval has a behavior close to that 1in
which solutions are known. Perturbation theory may be used with

either approach.

Each type of analysis is most useful when expressions for

the dispersion/attenuation or reflection/transmission curves are

given in terms of the functional form of the index modulation.
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1owever, a good qualitative understanding of a problem is often iﬂf
: . , , RO

possible in terms of integrals which may bhe obtained numerically N
tor specific instances. Figure 3.1 shows the relationships bet- !!f
ween various functions commonly used in different approaches to bﬁ
the problem. e
~
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The solution to the wave equation and its derivative may be B

i3

thought of as a vector, so that the gquantity relating the input e

and output values of this vector is a matrix. 1In an optics

problem we actually need to know four functions to completely
specify one of these vectors, (e.g., for propagation in the x [

direction we need to know Eyx, Ey, Hx, and Hy); so that in general,

we need a four-by-four matrix to describe the medium. However, :L;f
we usually assume a scalor behavior for the dielectric, reducing DY,
our four-by-four matrix to two two-by~two matrices, one ftor TE e
waves, and one for TM waves. Once we have obtained the matrix

coefficients for ¢ and y' the problem is essentially solved.

3.2 Relationships Between Two Different Approaches

Since the medium is periodic, the dispersion curve is given :;n?

by an expression of the form48 :;:.‘
':‘:'-%‘h

cos kd = Tr [A] , (3.1) R

where A is a transfer matrix. The elements of A will be func- ffﬁ:
tions of the frequency of the incident wave, w, and the angle of o
incidence of the incoming wave with respect to the filter.
Alternatively we may find the input impedance z;j and charac-
teristic impedance, z¢ (or their corresponding admittances) from
the elements bjj of A, from relations of the form, 49

2. = 222 L " 12 (3.2)

oAy T A 2y
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= - i - 2
z [a a + i “r; {a + a22) l/2a2

e 11 22 X 11 (3.3)

o
In Equation (3.2) zj is the load impedance. We see from Eguation
(3.2) that the impedance concept may be used to describe the
effect of terminations, junctions, and local perturbations,
However, these quantities can also be described by the difference
equation approach. The impedance concept is most useful when the
dielectric is a scalar (resulting in two-by-two A matrices) and
the problem is one dimensional. More general problems can be

expressed in terms of Green's functions, which are closely

related to A, zj., and 2z..

From Equations (3.1) (3.3) we see that we may obtain the disper-
sion relation in terms of the system impedance. If the system is
viewed as a one-dimensional transmission line, we have impedances

211+ 2332, and zy, (see Figure 3.2), with49

ayy = 222/ 212 s (3.4)
a2 = 211 / 212 (3.5)
2
ajz2 = (212 - z11212)/212 (3.6)
apy = -1/212, (3.7)
and

cosh kd = (zll + 222)/2212 ' (3.8)

Zo = 21- (le - 2Zp2) + 212 sinh kd . (3.9)

The reflection and transmission coefficients may be obtained

directly from A, or from Zj,. We have49,50

Ry = apy / ax; (3.10)

Lo a el sedi AP e RN At A A S A A i



e . e phs Tiat Rl Bt Mbha b 4 ] TR

5

e

-oUT{ UOTSSTUSUERI} B I03 FTun 3eadax souapadur

\

2l

,N_N-

NN.N

¢ 2anb1a

23




A A M Ua At aisas Shda i st ouh ol i

(3.11)

] Typ = Tp1 = Vazy

for reflection on the left, Ry, reflection on the right, Ry, and .
i transmission Ty or T3], Oof course, we will also have30
z,~2;
R=Z_+Z_. r (3-12)
o i

if the filter is approached via an impedance z,.

LaAang __amuas

The dispersion curve can also be found from a knowledge of

either B or z. This is especially true if A is symmetric, in

which case aj; = a3, and/or an absorption may be neglected,
which implies that det[A] = 1. Since the stop and pass band
edges occur at cos kd = 1, in the case in which absorption may be

neglected, the dispersion curve gives the filtering behavior for
a given form for the modulation profile. This provides an
understanding of the inverted problem, the specifications
required on the modulation potential to obtain a set of predeter-
mined band edges. Similar comments apply to the reflection and
transmission curves, provided again that we have expressions in
terms of functions, rather than constants. The required
expressions will become unwieldy if the solution for y within the
unit cell of length d cannot be expressed in a compact form.,

Nevertheless, we know enough from earlier work to say a good deal

about the behavior of the dispersion curve resulting from a given

modulation profile.

For example, Yeh, Yariv, and Hong51 have studied light propa- .}E
gation in a filter with a step function (Kronig-Penney) modula-
tion. The results of their calculations are shown in Figures 3.3
to 3.7. In Figures 3.3 and 3.4 the pass and stop bands are

plotted as a function of the angle of incidence, 6, with
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8 = k sin 8 . (3.13)

The case studied in Reference 51 dealt only with small modu-
lations, so the stop bands are narrow compared to the pass bands.

We see that at low angles of incidence the band edges are insen-

sitive to the angle of incidence. This insensitivity extends to

larger angles as the depth of modulation increases. From Figures
3.6 and 3.7 we see that the reflectivity curve corresponds closely

to the locations of the stop bands up to fairly high angles of
incidence (in this case 40°). In Reference 51 it is shown that

the dispersion curve (Figure 3.5) dominates the reflectivity
curve at low to moderate angles of incidence. For TM waves the

stop bands narrow as they approach the Bragg angle, disappearing
altogether at the Bragg angle (Figure 3.7). We note that Figure

3.5 shows how attenuation in the stop bands may be incorporated
into a dispersion curve.

3.3 The Transfer Matrix

Once we have a solution for y, we may obtain the matrix ele-
ments of B immediately.52 A second order PDE will have two inde-

pendent solutions. Let these be ¢; and ¢, and let

<
1}

cy161 * €202 . (3.14)

Then

L] 1
Vo= cy4p’ + coe' (3.15)
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(a)

Reflectivity spectrum of a 15-period Bragg reflector for (a) TE waves and (») T™M
waves at vanous angle of incidence. The indices of refraction of the layers are taken as n, = 3 4

and n, = 36. and the laver thicknesses are such that @ = b = :A. The Brewster angle 1
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Figure 7 Reflectivity as a function of incidence angle for a TE
? wave in a square-well stack.
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Solving for c] and c, we find we can write

pix) pix"')

"
w

v'(x) prix') '
with

bip = [optx)e5(x") = ¢,(x)ej(x")1/D ,

bia = [o5(x)ey(x") = ¢;(x)¢,(x")1/D

byy = [6](x)eh(x") = 5(x)ej(x")1/D ,

and
b22 = ¢é(x)¢l(x') - ¢i(x)¢2(x')]/D R

where

¢1(x) ¢2(x)

(@]
1]

HES! 85 (%)

We see that

b11 = -ablz/ax'

b22 = ablz/ax ’

2
—_ ] -
21 = abll/ax = abzz/ax = 3 blz/axax' ’

b

and

abll/ax = 3b22/BX' .

Usually we have

b = b

22 |

We note that using Equation (3,.,1), we have
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(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.25)

(3.26)
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cos kd = [¢1(x)¢é(x') - d,(x)e(x")
oo (x) g (x") = i (x)e,(x')]/2D . (3.27)

The expression of the matrix elements in terms of x and x'
aighlights their connection with Green's functions. Often we
can reduce these expressions to expressions in terms of one or

more distances between x and x'.

For example, for a simple step function modulation with
characteristic distances a and b,

a+b=4d4d , (3.28)
we have49,53,54
G(a,b) H(a,b)
B(x,x') = (3.29)
G'(a,b) H'(a,b)

3.4 Constant Index

We now illustrate how this may be done, using as an example

the solution to the equations

d2y/dx2 + K2y = 0 . (3.30)
The solutions are
$1 = cos Kkx (3.31)
and
¢2 = sin kx . (3.32)
We let
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and find

D = k{cos?kx + sin?kx] = k ,
bij2 = [sin kx cos k(x-a) - cos ka sin k(x-a)]/k
= k=1 sin ka ,
bj] = [kcos kx cos k(x-a) + ksin kx sin k(x-a)}/k

= cos ka
bpy = [-k2sin kx cos k(x-a) + k2 cos kx sin k(x-a)]/k
= -ksin ka

bop = [kcos kx cos k(x-a) + ksin kx sin k(x-a)l/k

cos ka .

With the identifications

G(a)

cos ka ,

H(a) k-1l sin ka ,

we obtain the form of Equation (3.29).

Expressions for the transfer matrix B in literature give the

functions G and H of Equation (3.29) in terms of the unit cell

distance d:

G(a,b)

G (a + b)

G(d) ,

H(a,b) H (a + b)

H(d) .

A comparison of Equations (3.29) and (3.16-3.20) raises the

question as to whether the matrix element in Equations

e
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(3.17)=-(3.20) can be expressed in terms of d., We are also
iterested in the connection, if any, between the G and H func-
ions or equivalently, between by1 and byy. If such a connection

exists, we may solve for the B matrix elements, given the disper-

sion relation, This would be a great help, since we can often
obtain the form for the dispersion relation directly, without
first finding the form for B, as we will show in Section 5. This

could be one step in an inversion process.

Equations (3.22)-(3.26) suggest a means of answering both of these
guestions. We may rewrite the relations, Equations (3.,17)-(3.20)

in terms of the difference between x and x':

X - X' = r . (3.43)

Usually we will choose r = d. From the definition,

Equation (3.43), we obtain 53%
r/3x = 1 , dr/ax' = -1 . (3.44) E_

We write i;g
de/dr = ¢' (3.45) l\

and see that n

(3.46) e

(3.47)
o
. .\:.:-7
(3.48) RS




It seems then, that we may write

r b! b 7]

B = , (3.49)

-bll b|

le€Co, G ~ H' . (3050)

From Equation (3.49), it appears that we may write Equation

(3.1) or Equation (3.27) as

2 b' = cos kd . (3.51)

Consequently, if we have a dispersion relation of the form

2 g{d) = cos kd , (3.52)

we may write

b= fg ., (3.53)

B = - (3.54)

L—g' g

We see then that the central problem is to solve the PDE

equation for y. We now discuss means of obtaining this solution
further, and give pertinent examples in which the solutions have

been obtained.
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4. SOLUTION OF THE WAVE EQUATION

We will make some simplifications in our discussion, mostly
for the sake of clarity. We will confine most of our remarks to
the one-dimensional problem. We will also deal in general with
real refraction indices and infinitely long systems, All of
these simplifications can easily be extended to treat a more
general case. We will also confine our discussion to systems
that are strictly periodic with period d. This is an important
boundary condition. From the discussion that follows, we will
see that it will not seriously limit the performance of our
filter.

We seek to solve equations of the form!

a2y

2, 2 2 _ dine AU
;2“" ko(n (X) - S )U ‘-?x——a; (4.1)
and
atv (n2(x) - s2)v = dan(p-s?/e) av (4.2)
dx2 o S - dx dx .

2
d‘u 2 _ .2y, _ dany dU
;—5 + k- (n%(x) s“Ju = T ax (4.3)
X
and
a®v ., 2 (.2 2 den(e-s2/y) dv
= + kg (n“(x) - s®)v = I B ax (4.4)
dx

for TE waves. Even 1f yu is a constant, e will not be. 1If ¢
varies slowly we may make a WBKB approximationzl3 and set the
right side of these equations equal to zero. 1In general,

this approximation will not be valid. It can serve as a good
starting point for perturbation theory, it makes contact with a

large body of literature, and it is instructive. Therefore we

will consider solutions to the equation




. (4.5)

Without loss of generality, we may simplify our discussion by
setting s2 = 0 (normal incidence).

In mechanics we have?

n{x) ~ /{E - V(x))/E (4.6)

where E is the energy and V(x) is the potential. In the par-

ticular case of quantum mechanics, we have

k=P/h v

and an equation of the form Equation (4.5) which is
Schroedinger's equation. A great deal of work has been done on
periodic systems using this equation in the band theory of
solids. n corresponds to the impedance z in transmission line

problems. In acoustics, we have n ~ pv, for velocity v and den-~
sity pe>

4.1 Piecewise Constant Modulation

The step function modulation is one of the most thoroughly
analyzed of any periodic response function.®"28 1t is easy to
construct experimentally, can be solved exactly, and has cosines

and sines for eigenfunctions, so that products of eigenfunctions

can often be reduced to a compact form. Since the system is

piecewise solvable, we may multiply matrices of the form
cos k n.g. n.”1 sin k_n.1.
o i”"i i o i”i
-n; sin konili cos k n; e, (4.7)

for each layer of thickness £%; and index nj. The most studied

case is the double layer (one atom), with periods a and b and
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indices ny and np. After multiplying matrices, we obtain the

dispersion relation from Equation (3.1):

cos kd = cos kon a cos kon b

a b

3'3
logm 5+

1 "o, . .
. - ( + ﬁ—) sin k n_a sin k b . (4.8)

a o™b

o

Here d = a + b. We see that when nz + np = n, we find
cos kd = cos kgn(a + b) , (4.9)

as we should. When n; << np and a ~ b we find
- -k -
cos kd = cos kyn b - 5 k n a sin k nb . (4.10)

A problem of more widespread interest occurs when
npb << nza, but np >> ny. Then we have

cos kd = cos kgnaa - 5 (np/na) kpb sin konaa, (4.11)

where kp = konpe. This system was studied by Mason in regard to
acoustic filters as early as 1927,9 but is best known as the
Kronig-Penney problem, after these authors published their inde-
pendent derivation of the solution applied to a model of energy
bands in solids in 1931.10 Usually a variable ng is defined in
such a way that

21
n,a = 7(nb/na)kbb . (4.12)
Using Equation (4.6), with V(x) = -U >> E over region b,
V(x) = 0 over region a, and E = kg we have ny = 1 and ng ~ U/E,
. so that % ngkob/na > % Ub/ky. This is commonly written as U'a.l0

this model is commonly used for energy band calculations.ll-ls

. . 1
If we make the association ny ~ z4, 5 Kobnp = np = zp, we make

contact with the problem of a transmission line with unloaded line
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impedance z, that is loaded at distances a apart by discrete

impedances zp:

cos kd = cos kgnad - (zp/zy) sin kgnaa . (4.13)
For a string or rod loaded by point masses, zp = mw.> If we now
consider only long wavelength waves, we may write:

1 = cos kd = (np'/ngy) kgnza , (4.14)

or

2 sin2

(3 kd) = konpa (4.15)
making contact with the literature on lattice dynamics,

The double periodic square well potential has been studied
by Dubrovskii and Pogorelskii;14 the resulting expression for the
dispersion relation is complicated.

4.2 Sinusoidal Modulation

Another problem that can be solved exactly is that in which
the potential is sinusoidal., This was first treated by Morse in
1930.29 Morse solved the problem in three dimensions as well as

in one dimension. We write e(x) as

e(x) = ey - ejcos(2rx/a) . (4.16)
and letting
_ 2 _ 1 .2 - 2
a = koeo r 9= 5 koel , and ¢ € (4.17)

we may write Equation (4.5) (with s = 0) as
d2y / dx2 = [a - 2qcos(2mx/a) ]y . (4.18)

This is the standard form of Mathieu's equation.30 The solutions

are circular elliptic functions. There are four basic types of
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these functions:

ce,n(z,q) = 7 A, cos 2rz , (4.19)

ceyn41(2,Q) g Aypyy COs(2r+l)z (4.20)

seyn+y(2:Q) = g Byrsp Sin(2r+l)z (4.21)
and

se, 4p(2,Q) = g Bypyp Sin(2r+2)z (4.22)

where z = nx/a and should not be confused with the impedence.
The functions cey, and sep go over to cosine and sine functions
when €] is small compared to egg. Some of them are shown in
Figure 4.1, The Mathieu functions may also be expanded in terms
of cylindrical Bessel functions and Hankel functions, and in the
case of large q, may be approximated by parabolic cylinder
functions.3l We will discuss various expansions of the Mathieu

functions in Section 6.

Levine has examined the effect of various terminations on
the stop and pass bands pertaining to the Mathieu problem,
Perturbations were studied by Slater,32 who considered a dielectric
of the form ¢y + ejcos 2z + epcos 2pz, as well as ¢g + e1cos 2z
+ €cos z. Slater considered two- and three-dimensional per-

turbation problems as well as the one-dimensional problem.

4.3 General Observations

Since both the Kronig-Penney and the Mathieu problems are
exactly solvable, comparisons have been made of the stop and pass
bands created by these modulation profiles. The result depends
on the relative size of the distances a and b in the

Kronig-Penney profile., When a = b, the two profiles give very
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Figure 9. Form for Mathieu functions.
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similar results. The width of the pass bands relative to the

stop bands increases with the ratio of b/a. 33

As a wave propagates through the filter, it is partly
reflected due to modulations in the refractive index.

If the wavelength is much greater that the periodicity in

(Fkod<<1 for a mean index n), the wave will not see the index
modulation, and the wave will be passed. When the wavelength in
the medium nearly matches d, the wave will interact strongly with
the modulated profile; constructive interference will occur between
reflections that occur at distances d apart. This will also

occur at wavelengths which are submultiples of this critical
wavelength--a series of stop and pass bands will occur. Examples
corresponding to Equation (4.10) are given in Figures 4.2 and 4.3,
where y ~ np—-ny. The width of the stop bands is roughly propor-
tional to the amplitude of the index modulation.

By our argument, we see that successive stop bands arise in
part from the corresponding Fourier components of the modulation
profile. Thus the second stop band is sensitive to the strength
of the second Fourier component of the index modulation, etc.
Consequently the widths and positions of the lowest bands are not
very sensitive to changes in the modulation profile, only to its
periodicity (length of the unit cell)., Changes in the shape of
the profile have their greatest effect on the higher-order bands.
For example, if we approximate a sinusoidal index modulation by a
series of thin steps, we may expect very little effect on the
location of the edges of the lowest bands. At high bands
corresponding to wavelengths on the order of the step thickness,
we would anticipate relatively large changes. Of course, these
higher order bands may well correspond to wavelengths that lie
above the bandgap of the dielectric materials. 1If the step
thickness is 100 nm, then we would expect strong changes in the

bands corresponding to energies of say 10evV. However, this
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Figure 11. Dispersion curves for d =




region is not of particular interest. 1In other words, the modu-
lation depth and overall periodicity d are the main parameters
affecting the band edges of interest. Fine details of the shape

’ .
€« 1
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ot

of the modulation are not very important. Bands corresponding to

o

4
»

the Mathieu problem are shown in Figures 4.4 and 4.5. A com-
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.
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parison between the bands for the Kronig Penney and Mathieu
problems is shown in Figures 4.6 and 4.7.

If the system is multiple, periodic higher-order bands at
corresponding multiples will be affected. We will discuss this
further in the next section, but we can see from the argument
given above that since a multiple periodicity implies that second
and higher order Fourier components of the modulation profile
will be large, the stop bands (band gaps) above the fundamental

will be widened.
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S. DIFFERENCE EQUATION CALCULATIONS

Often we can convert a PDE into a difference equation by an N
appropriate series transformation or decomposition, followed by
an approximation which allows us to limit the coupling that
occurs between the basis states of the decomposition. We now
give two examples of how this can be done. The first is a
Fourier transformation; the second is known as the tight binding,
or LCAO method. It is the approximation which limits the number
of connected basis states appearing in the difference equation

that makes the difference equation method practicai. consequently,

this approach is only useful when such an approximation can be
made,

S.1 Fourier 'I‘ransformationl'2 ;fl

We wish to solve the PDE of the form in Equation (4.5). We
make the decompositions

Sh " T . ..
W e Y

1ka £ .
y (x) =] Ajlk) e , (5.1) e
J f:

where Z::.‘,
P

kj = k + 21j/d (5.2) E

and ¥f~ €
iK,x ;’.3'
n’(x) = ) g, ' , (5.3) oy

L DR

where lff l
Kg = 2me/d . L

kB

Substituting Equations (5.2) and (5.3) in (4.5), we find f@fi:
.:Vh-- '

. «".®
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)] A.(k)e I =0 . (5.4)

In principle, Equation (5.4) is exact, but involves an infi-
nit2 sum over the Fourier components g, for the square of the
index, n2, we need to drastically reduce the number of these
components. Fortunately, if nz(x) is a reasonably smooth
function, we may terminate the series in ¢ after a few terms. As

an example, we consider the Mathieu problem, in which we have

gy = 98541 - (5.5)
Substitution of FEquation (5.5) into Equation (5.4) now gives

)2 . kisz] A, = kg[A (5.6)

'k + k.
.\ J

J

j-1 Byl

This is a solvable equation. Rather than pursue it here, we go

on to derive a similar equation by another means.

5.2 Tight-Binding Approximation3

A great deal of work has been done using difference equation
calculations in the band theory of solids based on the tight-
binding approximation.3-12 This corresponds to the case in which
regions of large refractive index are sufficiently separated by
regions of low refractive index that they form optical wells
which are only weakly coupled. Parallel calculations have been
made in three dimensions as well as one dimension and include
investigation of the effect of various terminations (surface
states). Although they are most accurate in cases of very deep
modulation of the index profile, they provide an instructive
insight into band behavior, and serve as good points for com-

parison with more general calulations.

Let us assume that we have a complete set of known orthonor-

mal solutions ®n for the equation
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2 2
¢ +ko[no(x)-s vy =0 (5.7)

n

.
and that we wish to solve Equation (4.5): EIvN
2, 2 2 e
v" + ki [n%(x) - sy =0 , (5.8) WS
o AN
<. "

for some
n’(x) = nl(x) +nl(x) . (5.9)

We may expand ¢ in terms of some as yet unknown coefficients an

as follows:

n

Upon substitution of Equation (5.10) into Equation (5.8) we obtain

2 2 2 2 2
y ak[s - so]¢n =7 a knoe . (5.11)
n n
If we multiply this equation of ¢, and integrate, we will obtain

the results

2, 2 2 2 2
,Z, a k[s” - s]] = %\ a k fdx ¢ (x)¢ (x)n"(x) . (5.12)

Since the functions ¢ ,(x) are known, the integrals are obtainable

in principle, and we may solve for the coefficients a, in terms

of them. The result will be a series of coupled equations. This

can get very messy if a given initial solution ¢, is coupled by

n({x) to very many other solutions ¢ne The conversion to a dif-

ference equition is only practical if the coupling is only to a

few other solutions. An example in which this can occur is when

the ¢, are localized in a region smaller than the (unit cell)

distance d. We consider the case in which we have

/ dx (X)) 4(x)In2(x)

«




= 0 , (m=mn)>1 . (5.13)
Then we will find
B(an+1 + an_l) = (S - a)an I3 (5014)
with s2 - sg = S. We see that we have greatly simplified the

solution by our approximation. It has been found useful to
assume that a, is of the form

ap = A" (5.15)

Substitution of Equation (5.15) into Equation (5.14) yields

an=1 (g2 - (s - a)rx + 8] =0 . (5.16)

We now rewrite Equation (5.16) as

2 sS-a =

A - [—B—]x +1=0 . (5.17)
We note that Equation (5.17) is of the same form as the eigenvalue

equation for the transfer matrix, B. That is, if we wish to

solve the equation
p(x+d) = Ap(x) , (5.18)

we need to find the roots of the transfer matrix as given for

example in Equation (3.28):

G(d) - 2 H(d)
=0 . (5.19)
G'(d) H'(d) - A
This gives
22 - [G(d) + H'(d)]x + 1 =0 , (5.20)
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since det([B] = 1.

We know that the dispersion relation is

L:
Tr(B] = G + H' = 2coskd , (5.21) S.‘f's;,-‘
R
NS
and take advantage of this insight to make the assumptiocon Q.\,

(s - a)/B = 2coskd . (5.22)

Now if we substitute Equation (5.22) into Equation (5.17), we
will find

A = coskd + isinkd = etikd | (5.23)

In turn, substitution of Equation (5.23) into Equation (5.15)

will bring
an = pelknd + Qe“iknd . (5‘24)

Since the basis functions ¢, were assumed to be known, the
problem has now been solved given the appropriate boundary con-
ditions. We see from Equation (5.24) that we have shown that the
assumption Equation (5.22) implies that the expansion Equation
(5.10) is in terms of Block waves. Usually the equivalence is
derived in the other direction: the Block expansion allowed due
to the periodicity of the system implies the condition Egquation
(5.21).13,14 e note that Equations (5.6) and (5.14) are of
similar form., This is in part due to our use of a Block

expansion.

5.3 Surface States

We can investigate effects such as terminating the filter T

e

through the boundary conditions. We let the filter consist of N
periods of length d, so that the filter has a length
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L = Nd . (5.25)

We then impose the boundary condition that ¢ be zero at L:
a, = 0 . (5.26)
Together with Equation (5.24), Equation (5.26) implies that
a, = Asin(N - n)kd / sinNkd . (5.27)

n

Since A / sinNkd is simply a constant normalizing factor, we

drop it in favor of
a, = sin(N - n)kd . (5.28)

n

We obtain our other boundary condition at the termination by

making the substitution

ga; = (s ~ a')ag (5.29)

for Equation (5.14). Then Equations {5.28) and (5.29) give

(s ~ «')sinNkd = Bsin{n ~ 1)kd . (5.30)

From Equations (5.30) and (5.22) we get

(a = a')/B + 2coskd = coskd ~ cotNkd sinkd , (5.31)

or, with
g = (¢ —a') /B , (5.32)
g = - sin{N + 1)kd / sinNkd . (5.33)

The intersection of this family of curves with the curves
z{kd) = constant yield solutions for g > l. One solution,

corresponding to a,, the "surface state," will give a complex

value of k. This wave will not propagate through the filter.
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The edges of the pass band are given by the dispersion rela-
tion Equation (5.22). The density of states will be greatest at
the band edges.

5.4 Extensions and Multiple Periodicity

The difference equation tack is a useful means of studying
the effects of multiple periodicity. The conversion to a

difference equation has been used extensively for this purpose in

band theory and lattice dynamics. The published literature is a
valuable guide for parallel calculations which we might wish to
make. However, the results that have been obtained in these
fields are not readily used in optics, since energy band results
seek to solve for the eigenvalues (or energy) of the Schroedinger

equation, which is equivalent to solving for s in Equation (5.12)

or s in Equation (5.14). We can easily take s = 0, and wish to find

the relation between k, and k. We are also interested in an algorithm
that is generally useful beyond the nearly free and tight binding

approximations. It seems that this can be done. Let

g (x)
y'{x)
Then
vix+d) = B(a)P(x) (5.35)
and
vix-d) = B N aw(x) . (5.36)
Hence
v(x+d) + p(x=d) = [B(d) + B H@]b(x) .  (5.37)
With
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vix+d) = "% (x) (5.38) o~

and

g (x-d) = e v(x) ’ (5.39)

1 .

B(d) + B (d) = 2cosh(kd) . (5.40)

we find

From Equation (3.29) (and the discussion following it in Section 3)

} we have

B = . (5.41) i

The inverse of B is

,'.','.'. .
R IR

wlf

-
[

H -H
-1l - . (5.42)

U

v v
" 'l

|
o
(")
* v
¢ 'v' # r"i/' 1, 4y

’
¥
(2

,
.
17

L
. .
W
.
et

Therefore we may write Equation (5.40) as ﬁ;i

G+H' 0 S

= 2 cosh(kd) , (5.43) L

0 G+H' e
or ﬁfi
1 0 3

(G+H') = 2cosh(kd) . (5.44) N

0 1 N
It seems that the difference method may be applied to a general T;f'
problem, if the boundary conditions are suitably chosen with _QQL
respect to the unit cell. This would be very useful for the ﬂiﬁ}
)
analysis of a multiply periodic medium. Consider the system LQ:}
W
‘.~.-.‘.]
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+> - >
by = BX (5.45)

-1 (5.46)

>
—=a
L '

where the subscripts refer to distances with respect to the argu-
ment of the r.h.s. We find

+> > -1.+
by vV, = (8 +a ")x . (5.47)
Now
> >
Xg =@V (5.48)
and
> -1+
Xg =8 v . {(5.49)
Therefore
+> +> -1,+
Xg *xg = (a+8 )y . (5.50)
From Equations (5.47) and (5.50) we get
-1 -1,+ -1
(8 +a™) (a8 )b =(8+a ) (x, *xg)
= Y.tV rVrd
b+a a+b
= Vgt Wty - (5.51)
We write Equation (5.51) as
-1 -1
[(B +a "J(a +8 7) - 2]y = vy * Vg - (5.52)
With
=X .
wd v (5.53)
and
-1
Vg =2 Ty (5.54)
we have
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(8 +a Y)(a +87Y) - 2= +27% (5.55)

or oy

[

—

i

=

4

y—
"m . e “

Ba + a "B = X + A . (5.56) O
We let :::_.'
e
M = Ba (5.57) . ;
and ...‘.
y o= e (5.58) T
Then we have ﬁ
Tr[(M] = coshkd . (5.59) {ﬁf
References tﬂ;
O
"d
1. R. A. Smith, Wave Mechanics of Crystalline Solids (Chapman g
and Hall, London, 1963). e
2. John C. Slater, Quantum Theory of Molecules and Solids, 2 i{ff
(McGraw-Hill, New York, 1965). e
3. S. G. Davison and J. D. Levine, in Solid State Physics, 25, =3
H. Ehrenreich, F. Seitz, D. Turnbull, Eds., p. 1, (Academic
Press, New York, 1970).
4. Jaroslav Koutecky, Adv. Chem. Phys., 9, p. 85 (1965). ,’
5. S. G. Davison and J. Koutecky, Proc. Phys. Soc., 89, p. 237 TL;
(1966). e
6. Jaroslav Koutecky and Sydney G. Davison, Int. J. Quantum ::ﬁ{
Chem., II, p. 73 (1968). R
7. Jules D. Levine and Sydney G. Davison, Phys. Rev., 174 (3) B
8. S. G. Davison, T. Y. Ling, and U. S. Gosh, J. Phys. Chem. !}?
Solids, 28, p. 1921 (1967). L
9. S. G. Davison and Y. S. Huang, Surf. Sci., 13, p. 337. :
S
10. E. T. Goodwin, Proc. Cambridge pPhil. Soc. 35, p. 205, 232 e
(1939). N
.I‘:.-':-
R
64 o
PN
I
[

.......




-

"-‘."-'.--.-.-_
PR PR P P PO

l1. T. B. Grimley, Adv. Catalysis, 12 p. 1 (1960).

12. T. B. Grimley, Proc. Phys. Soc. 72 p. 103 (1958).

13. Robert E. Collin, Field Theory of Guided Waves (McGraw-Hill,

New York, 1960).

14. Frederick C. Brown, The Physics of Solids (W. A. Benjamin,

New York, 1967).

65

. LR TN . -
- e e

A A I e ST I UL L EESCE
R FRC P e N e T T T L P UL
PAPL AL PPV I PR A A e P S N AP R A A P T A PPy

e e e el -
P NI ST R S A A




Paliiriat- e Jiute e Sas Sad et et Bt hh g Bt i Adh B 20 ub 0 Y dh 4

6. PERTURBATION EXPANSIONS

We now look at some of the ways in which we can find
approximate solutions for y and for the dispersion relation when
the index modulation has a small departure about a profile for

which we can solve.

6.1 Pedestrian Expansion

I1f we know that our modulation_profile is similar to one for
which we have a closed form solution we may make expansions about
both the known solution and its corresponding modulation profile.l
We let the known solution be v,» and the unknown solution be y.

We then write

2
boE by P, H by s 8 <l (6.1)

As §; increases, we will need to include more terms in the expan-
sion for ¢. Similarly, if the dielectric constant for the known

case goes like n%(xl), we write

2 2 2
n2(x) + 62n3(x) (6.2)

2 _ 2
n (x) = nl(x) + 62

for ny(x) in the unknown case. Then, upon substituting Equations

(5.1) and (6.2) into Equation (4.5) with s2 = 0.

dz\u/dx2 + k2n2(x)¢ =0 , (6.3)
we obtain
2 2 2
2, 2 2 2 2 2 _
k (nl + 62n2 + 62n3)(wl + dlwz + 62w3) =0 . (6.4)
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order and arrive at a series of

We can separate terms of a given

equations:

" 2.2
wl + k nlwl =0 ' (6.5)
" 2.2 _ 2
vy * Knjw, = =(6,/8,)n2y, (6.6)
and
' " 2 2 _ _ 2. 2 2
vy o+ knpug (52/51)“2*2 (52/51) nyv, - (6.7)

Equation (6.5) is our solvable homogeneous equation with a
known solution. Equations (6.6) and (6.7) are similar to
Equation (6.5) but are inhomogeneous. We can think of Equation
(6.6) as a problem in which the solution to Equation (6.5) drives

an oscillator of the same form as that of Egquation (6.5).

We can learn something about the dispersion relation (kg

versus k) 1f the amplitude of the index modulation is small by

making another expansion, similar to that of Egquation (5.1). We

write

ik.x
J A.(k)e
3 ]

k.
J

k + 2n3/d . (6.9)

6.2 Band Gap for Small Perturbations

We assume a small perturbation in the index modulation about

a value for which we can solve. Then we haveZl.,3
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ik x ’ 1k . X

m
e + 61§ Aje ) . (6.10)

1}
>

wk(x)

1)
o
.

We begin by letting m We write our equation for ¢ as
2(n2 + 6 n2)¢ = 0, (6.11)

V¥ kglng * 8yny

with
2 L
nl = 2g2e : ’ (6.12)

and

K = 2n2/d . (6.13)

Then we substitute Equations (6.9), (6.10), and (6.12) into
Equation (6.11) and find

2
+ szvoggze

) 1(kj+K2)x

]
+ 5162k0§ gngje (6.14)

1]
o
L

To first order we let

61= 62 =6 .

Then to first order we have approximately2

A (k2n2 _ k2]e1kx
o o o

[ ik . x
+ 8] (k2ng - k3 Aj + agkigle T =0 . (6.15)
j

We now operate on Equation (6.15) with
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d -ik.x NN

[ dx e I . :
o
We find
k=nk . =0 . (6.16)
. A. = k°2 g.A_ , 3J#* 0 . (6.17)
17 ERn ot

We see that to first order in 8, k is unchanged, and the form

for y is modified slightly. 1If we operate with

d

[ dxe
)

~-ikx

we find to second order in 6 (see Reference 2)

2 2 5 d i(kj+K£-k)x

Aj(kgng - k7)a + 8 522 EA glf dxe =0 . (6.18)

The integral vanishes, unless
L o= -j . (6.19)

Hence
2.2 2 . -

Ao[kono k) + 5,6, % Ajg_j 0o . (6.20)

From Equation (6.17), we find

2
k2 = k%n? + 5.6, 7" ‘o 6.21
= %Mo 172 ¢4 7 2.2 9395 - (6.21)
kjvnok

We see that a problem develops in Equations (6.17) and

(6.21) when k =+ kj.

contribution from the mth term:

We can patch this up by increasing the
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. ik x ik . x
Vo= Ae + A e + Glz"Aje I, (6.22)
]
Then proceeding as before, we find to first order

2

2.2 2
A ngky - k) o+ SkcA 9, = 0O (6.23)
and
szg +(n2k2-k2)A = 0 ' (6.24)
O 0" -m feXe) Sem’/ m . .
Hence
2.2 _ 2 2,2 _ 2 _ 2.2 2
(ngkg = k%) (ngkg - kZ ) = 6“7 | g, | . (6.25)
For k Q:k_m we find approximately
2 __ .2 2
kO = ]'{I_ﬁ / (no + Ggm) . (6.26)
This creates a band gap with width
g g
bk = —5 k= 5= k. (6.27)
2no o M

This means that a stop band is formed whose width for the mth

band is proportional to the mth component of ni.
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7. CANDIDATE MATERIALS

The impetus for this report was a literature survey of

suitable candidate materials for graded index optical components
and devices. Such an undertaking would be a prodigious task,
especially in view of the limited data available on the optical
properties of materials, and the vast number of possibilities.
This is all the more true because of the decision to direct the
bulk of the effort of this work to the analysis discussed in the
first six sections of this report. Nevertheless, the author
wishes to present his initial impressions of the possibilities
for suitable materials, albeit from the prospective of a novice
and an outsider, and to report on a limited literature survey.

First, some general considerations and comments are in order.

7.1 General Comments

The throughput of an optical device and its immunity to
damage under high-power conditions will be enhanced if the
absorption is low for a given optical path length, i.e., if
nj << nr. This mitigates against the use of amorphous materials,
which in practice tend to suffer from large absorption. This is
due in part to a very high density of scattering centers arising
from local, microscopic inhomogeneities, such as the frequent
occurrence of voids, and a general tendency to a high density of
impurities. This is especially likely if the stoichiometry must
be varied over a wide range. The latter problem is no doubt
enhanced by the former difficulties. Furthermore, amorphous
materials tend to possess wide regions over which infrared
radiation is absorbed by photons. Since we wish to vary the
refractive index continuously, a second implication of the need
to minimize absorption and scattering is the high desirability of
using materials with good mutual solubility; we seek compounds

possessing a similar structure with as different a refractive
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index as possible. The third corollary is the requirement that
the chosen compounds be amenable to manufacture with a low con-

centration of defects.

The chosen materials should be rugged, that is, they should
be chemically resistant, especially to moisture, should have good
mechanical strength, and a high phase transition temperature.
Their refractive index should not vary rapidly with temperature.
The desirability of minimizing short-range disorder suggests that
the solid solute materials be chosen with nearly equal bond
lengths as well as identical structures. This will be especially
true if the creation of a single crystal device is attempted. A
basic premise of the following presentation is that the bonding
lengths will usually be dominated by the nonmetals in the com-
pounds, rather than the metals.

This can be seen from Table 1, which gives the radii of
several atoms of interest.l We note that covalent bond lengths
are especially likely to be dominated by the identity of the non-
metal atoms. In these cases the small metal atoms often fit into
voids created by nearly close-packed nonmetal atoms. Thus we may
expect to vary physical properties without significantly
affecting bond lengths by substituting different metal atoms with
a given nonmetal atom. A good example of this occurs for com-
pounds of transition metal atoms with chalcogenide atoms.
Assuming that this hypothesis is true, we should seek -~ompounds

with identical structures, different cations, and anions which
are either identical or of nearly the same size.

To ensure structural compatibility in a solution, we will
also restrict ourselves to groups of atoms which form compounds
with the same structure as well as closely matched lattice
parameters when all possible combinations of atoms are con-
sidered. Therefore, we will organize our discussion in terms of

crystal structure in general, and in terms of the chemical




TABLE 1

CRYSTAL RADII
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Al

Li Be B C N 0 F
0.60 0.31 0.20 2.60 1.71 1.40 1.36
Ns Mh Al Si P S Cl
0.95 0.65 0.50 2.71 2.12 1.84 1.81
Cu Zn Ga Ge As Se Br
0.96 0.74 0.62 2.72 2.22 1.98 1.95
K Ca Se Ti \'4 Co
1.33 0.99 0.81 0.68 0.59 0.52
Rb Sr Y Zr Nb Mo
1.45 1.13 0.93 0.80 0.70 .62
Ag Cd In Sn Sb Te I
1.26 0.97 0.81 2.94 2.45 2.21 2.16
Cs Ba La Hg Ta W
1.69 1.35 1.15 0.78 0.68 0.70
Hg Tl Pb
1.10 0.95 0.84
I
I
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properties of the anions in particular. Since we did not
consider dispersion in the earlier sections we will not give it
much attention below. Also, we will concentrate on linear
refractive indices. Finally, we will concentrate on simple com-
pounds, as they should have fewer absorption bands in the

infrared.

The optical behavior of a compound is strongly affected by
the chemical nature of its bonds, in an analogous manner to many
of its other properties. It appears to the author that the ionic
materials often have the desirable attributes of low optical
absorption, low defect concentrations, and high melting points,
as well as wide band gaps. In many instances, especially in the
case ¢f the halogens, they are subject to chemical attack, par-
ticularly by water, and often they are brittle. However, a more
se.ilous difficulty is that ionic compounds tend to have low
indices of refraction, and a range of refractive indices

extending to high values is often desirable.

7.2 Halides

The fluoride compounds form a group of highly ionic
materials that have well developed and well understood optical
properties. They have very low absorption coefficients.
However, their refractive indices are uniformly low (n, ranges
from 1.25 to 1.53) seriously restricting their versatility. Some
of the pertinent properties of several fluoride compounds are
given in Table 2. 1In the tables, a is the lattice constant (all
lattice constants in the tables are given in angstroms), e, is
the high-frequency dielectric constant, eg is the static
dielectric constant, and wy and w| are respectively the trans-
verse and longitudinal optical photon frequencies at the gamma
point in ecm~l, Gisin? found that films of SrF, showed improved

performance with increasing substrate temperature during
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TABLE 2
FLUORITE STRUCTURE
Compound a n{um)
.5 2
CdF, 5.388 1.
CaF, 5.463 1.437 1.43-1.46
EUF 5.796
SrFy 5.800 1.25-1.36
POF, 5.927
BaF, 6.200 1.478 1.38-1.53
srCl, 6.977
BaCl, 7.34
YL{F, 1.458
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formation. This was attributed to a decrease in porosity.

Gisin states that the optical constants of films of SrF, depend
on the layer thickness due to nonuniform stoichiometry. Hall3
found that the index, absortion, and crystallinity of MgF,
increased with age. Hall attributes the increased absorption to
the creation of vacancies with the onset of crystallization.

Barnes and Gettemy4 reported on the optical properties of LiYF4«
which has a very low temperature coefficient.

The CsCl materials also have low dielectric constants. Data
on these compounds are given in Table 3, much of which is taken
from Brown,> Burstein et al.,® Lucovsky, et al.,’ and to a
lesser extent, Rao.3 (These authors are also the main basis for
Tables 4, 15, and 24.) The best bet for this group of materials
appears to be either TICl/NH4Cl or TICl/T1Br. There is a wider
selection of NaCl structure materials with a fairly wide range of
dielectric constants (see Table 4). Unfortunately, the alkalai
halides can develop color centers.® This may present a problem
for work in the visible, but the Ag,Na;_yBr and Ag,Na;_,Cl
systems appear to be attractive for work in the infrared. 1In
most ionic compounds, we expect only a 10% change in the
dielectric constant for two materials with closely matched lat-
tice parameters, but in these cases we find a change of almost a

factor of 2.

Compounds of the halides with many of the transition metals
have a layered structure. 1In these materials the small cations
are trigonally coordinated with the larger anions (see Figure
7.la). There are also layered compounds of chalcogenide atoms,
which we will discuss below. In these materials the basic struc-
ture consists of three parallel planes. The two outer planes are
made up entirely of anions. The middle plane consists only of
cations. A sandwich structure results, with the sheet of metal

atoms inside the sandwich, and all chemical bonds directed into
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Figure 16.
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Compound

T1iCl1
NH4Cl
TLBr
CsCl
T1lI
CsBr

CsI

TABLE 3

CsCl STRUCTURE HALIDES

78

62

99

73

62

..............

~~~~~~

w,

165

112

85

..........




e Te T e e T T

Compound

Li F
Li H
Na F
Li Cl
K F
LiBr

agcCl
NaCl

Rb F

TABLE 4

ROCKSALT STRUCTURE HALIDES

S
1.93 9.27
3.6 12.9
1.75 5.3
2.75 11.05
1.85 6.05
3.17 - 13.2
4.04 12.3
2.3 5.62
1.93 6.5

307
590

239
191
190

159

101
164
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the sandwich. Only a weak Van der Walls interaction occurs

between the anions in adjacent sandwiches. For this reason the
layered compounds are attractive in designing materials with
modulated physic ‘roperties. Even if adjacent sandwiches were
comprised of different compounds, rather than true solutions, .

there should be a low level of interface states.

The arrangement of atoms within any given sheet is hexagon-
al. The stacking of adjacent sheets in layers that assume a
trigonal coordination is ABC, so that a plane taken through the
material as shown in Figure 7.2 will contain an atom from each

sheet in the structure, resulting in the representations given in

Figure 7.3 and 7.4.9-11 <These figures depict the two stacking poly-

types assumed by halide compounds, the CdI, and CdBr, structures.
Lattice constants for halide compounds with these structures are
given in Tables 5 and 6. On the basis of their lattice
constants, CdI, type systems of interest appear to be Ti,Vy_,Cl,;
bromides of Fe-V-Mg-Mn solutions; CoyFe,_I5; and iodides of
Ti-Ge-Mg-Mn, Ca-Yb-Tm-Pb, and Cd-Zn-Bi-Te solutions. Similarly,
CdBr, structure materials worth looking into are 2Zn,Cd;_4Br,, and

chlorides of Ni-Co-Fe-Mg and Mu-Zn-Cd solutions.

Almost all of the optical measurements on layered compounds
have been made at short wavelengths, with a view toward eliciting
information on their band structures. Sinha and Mukherjeel?2 3nd

Doni and Grossol3 have made such measurements on PbI,  which has

many stacking polytypes, and an index of refraction of 2.9.
Yashiro, et al., reported on the emission spectra of Pb12,14 and
Ghita, et al, made ellipsometric studies on it.'5> References 16
and 17 report on the phonon spectrum of PbI,. Xondo and
Matsumoto made reflection measurements above 4eV on CdCl, and
CdBr, crystals, 18 yhile srivasta and Bist measured the infrared

20

absorption of Cd12-19 Anderson and Lo give the phonon spectra

of several layered halides. Many trichlorides also form layered
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TABLE 5

CdI, STRUCTURE - HALIDES

Compound a c
TiCl, 3.561 5.875
VCl, 3.601 5.835
TiBr, 3.629 6.492
CoBry 3.68 6.12
FeRr, 3.74 6.17
VBr) 3.768 6.180
MgBr, 3.81 6.26
MnBr, 3.82 6.19
Col, 3.96 6.65
Fel, 4.04 6.75
Tily 4.110 6.820
Gel, 4.13 6.79
MgI, 4.14 6.88
MnI, 4.16 6.82
BiTeBr 4.23 6.47
CcdI, 4.24 6.84
Znl 2 4,25 6.54
BiTel 4.31 6.83
Caly 4.48 6.96
YbI, 4.503 6.972
TmIsy 4.520 6.967
PbI, 4.555 6.977
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TABLE 6

CdBr, STRUCTURE

Compound a c
NiCl, 3.543 17.335
CoCl, 3.544 17.430
FeCl, 3.579 17.536
MgCl, 3.596 17.589
MnCl, 3.686 17.470
NiBr, 3.708 18.300
ZnCl, 3.774 17.765
CdacCl, 3.854 17.457
NiIjp 3.892 19.634
CdBr, 3.95 18.67

PbI, 4.54 20.7
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compounds. The infrared properties of TiCl3 were studied by

Emeis, et. al.2l
7.3 Oxides

The oxides form a natural group of optical materials, due to
their wide band gaps, high melting points, and resistance to
chemical attack., There are far too many of them to be given a
proper treatment in this paragraph; consequently our discussion
will only be cursory. As elsewhere in this section, we will con-
fine our remarks to simple compounds. The simplest system is the
Rocksalt structure. There are a large number of oxides 1in this
system, with an almost continuous distribution of lattice
constants, as can be seen from Table 7. The most closely matched

systems are NiyTi).xO, NbyxMg]-xO, and PuyxPaj.xO. The latter

systems have a lattice match to within 0.05%. Many of these oxides,

especially those of vanadium and titanium, form a series of
defect-structure nonstoichiometric compounds. Nonstoichiometric
oxides are discussed at length in Sorensen,22 and will not be
dealt with here. We note from the entrees on the dielectric
constants in Table 7 that the oxides tend to have somewhat larger

dielectric constants than the halides.

The Rutile family is a second collection of familiar oxides.
These materials are listed in Table 8, from which we see that
the Ge-Mn-Cr, Ta-Sn-Nb, and WxMoj-x systems are the best possibil-
ities for Rutile-type oxides. As in the case of the dichalcoge-
nides, which we will discuss in paragraph 7.4, the small
molybdenum and tungsten cations form dioxides with nearly equal
lattice constants. Lattice constants for Table 8 and most of the
following tables were obtained primarily from Wyckoff.23,24 p
similar but slightly more complex family of oxides is given in
Table 9, which suggests that solutions of Cr-Ga-Rh-Fe with Sbo0g,
of Nb-Ta with CrO4, of Sb-V with RhO4, TaxNb)-xFeOy4,
FeyRb)_xNbO4, and FeyRh).yxTaO4 are suitable candidate materials

for continuously modulated devices.

86

P DRl I R P P L A L T R I T N T =T .
. e e

. “« ¥t . .
O N B I S R e R T R I L PR TS A TR I ST
L PRSI P S P JREAIE P W ST P PR VD AT WPV WU YU W WA v SR A R WP PSRy o WS, RS A WP PR DY

P A R A0 4 S A WA PR A B BT ik
1% a®e




(B 2 - A 4 e i iyl

= T

e
L R N N

\J
..
.

TABLE 7

-
&
v 22 ot

ROCKSALT STRUCTURE OXIDES

.
D}
v

.
% e ety %
. .
hY

o 2
a

Compound a €ew £

1

2.
»
1]
o

VO 4,.062*
NiO 4.1684¢7
TiO 4.1766*

.

0]

?
"l F 4
Py
a2

55. :
T

NbO 4.2097
MgO 4.2112 2.95 9.65

Co0 4.26671
Tao 4.43
MnO 4.4448 4.8

Zr0O 4.62
Ccdo 4.6953 5.40
CaO 4.8105 3
YbO 4.86

PuO 4.959
Pao 4.961

SmO 4,9883
NpO 5.01

Eu0 5.1439
SrO 5.1602 3.46

*y and Ti tend to form a series of non-stochiometric oxides
f
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. TABLE 8

CASSITERITE OR RUTILE STRUCTURE OXIDES

25

e
U

)

Compound a c n

’
Pt}
L) <.'

Ge0, 4.395 2.859 1.6525
o Mno, 4.396 2.871
= Cro; 4.41 2.91

1r0, 4.49 3.14 t
o 050, 4.51 3.11
; RUO 4.51 3.19 t

e TiO, 4.594 2.958* 2.3 - 2.7

- Tao, 4.709 3.065
- Sn0, 4.737 3.186
> NDO, 4.77 2.96
3 TeO, 4.79 3.77
2
) WO 4.86 2.77
ey MoB 5 4.86 2.79
. P20, 4.946 3.379

:f * Ti tends to form a system of nonstochiometric oxides.
- t Metallic
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TABLE 9

RMO4 ARRANGEMENT

Compound a c
AlSb0y4 4.510 2.961
CrsSbOoy 4.577 3.042
Gasb0y 4.59 3.03
RhSbO, 4.601 ' 3.100
RhVO, : 4.607 2.923
FeSbOy4 4.623 3.011
CrTa0y 4.626 3.009
CrNbOg4 4.635 3.005
FeTaly4 4.672 3.042
FeNbO4 4.68 3.05
RhTa0y 4.684 3.020
RENDO 4 4.686 3.014
89
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The rutile materials tend to exhibit high dispersion.
Studies of titanium dioxide films have been made by Cherepanova
and Titova,25+26 gschiller et al.,?? Joseph and Gagnaire?8 and
Perney et al.?? The index of refraction of TiO, can vary by 103
depending on the preparation procedure. The absorption coef-
ficient, <, can be reduced to 10-4 yith proper care. It can also
be raised very high with the addition of impurities such as
copper. 30 Gagnaire and Joseph also studied the Ti/Ti0Oj
system.31 Samara and Peercy measured the pressure and temperature
dependence of e4 for rutile.32 <The optical properties of the
metals RuOj; and Ir0O, were studied by Goel, et al.33 while the
Raman spectrum of TeD, was taken by Pine and Dresselhaus. 34 The

optical properties of SnO, are discussed in references 35-37.

In addition to the Rutile structure, MoO,; and WO, can also
have a monoclinic structure closely resembling the Rutile struc-
ture. Since MoO, and WO, can occur in more than one phase, the
attractiveness of the Mo,W;_,0, system is considerably reduced.
This consideration is accentuated by the implications of a
monoclinic structure for the anisotropy of the dielectric
constant, The dioxides of Re and Tc also have this monoclinic
structure, The lattice parameters for these materials are given
in Table 10, along with those for (monoclinic) VO,, which has a
closely related structure., Since V easily forms a series of
nonstoichiometric oxides and VO, is not only imperfectly matched
to the crystal structure of other oxides, but undergoes a metal-
to-insulator phase transition at 68 C, it is not a promising com-
pound. We conclude that although the dioxides of a Re, W, and Mo
are closely matched, the materials listed in Table 10 are
not good candidates for continuously modulated devices. Studies

on tungston oxide films are reported in References 38-40.

The optical properties of VO, were measured by Mokerov and

Begishev as a function of temperature.4l vanadium oxide films
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TABLE 10

MONOCLINIC DIOXIDES

Compound a b c n
VO, 5.743 4,517 5.375 2.81

TcO3 5.53 4.79 5.53
ReO5 5.562 4.838 5.561
WO, 5.565 4.892 5.650
Mod, 5.584 4.842 5.608
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were studied by Gur'yanov and Terukov.42 qgther vanadium oxides
were studied by Mokerov et al.,43 Mokerov and Ryabinin,44 and

van Hove et.al.45

Many dioxides have the cubic fluorite structure; these ar=2
listed in Table 11. From Table 11 we see that meAml_xoz,

PuxCe/l_xoz, and U0, Pro,, should form continuous solutions, with

lattice matchings of better than 0.3%. Taguchi et al.,46 ME.

studied zio, films, and found that the dielectric constant varied ?3?

from 1.72 to 2.0, depending on the gas pressure at which the ; :;

films were formed. i;;
Y

Several other oxides were investigated in our literature
search, none of which appears promising for device applications.
Tanaka47 gives curves for several low-index, high-absorbance
oxides, which are listed in Table 12. The best of these is MnO,
which has the rocksalt structure. The high absorbance of one of
these compounds, Re304, was also studied by Schlegal et al.48,49
High absorbance was also studied for Co impurities in Al,05 by

Niklasson and Grangvist.50

The tetragonol materials, DyVO4 and DyAsO, are questionable

because their refractive indices are low and very similar.%l rThe

indices for DyvOy are 2.02 and 2.25; for DyAsO, they are 1.84 and
1.96. Feldman et al. reported on the Faraday rotation exhibited

by Bij),Ge0,5, Bi},S10,q, Bij,TiO,5, 2n0, Bi,03, and Ga,03.22

These materials would be useful in certain cases due to their
magneto-optic properties. The dielectric constants of Bi;;Si0, L
were investigated by Reza et al.33 Thin films of Bi,O03 contain a
high density of voids but the refractive index of about 2.55 is

not sensitive to variations in stoichiometry.54

The remainder of our literature search pertained to -
materials commonly used in the glassy state. Hing investigated '

losses in sintered alumina.55 He found that both Mg and Ca,
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TABLE 11

CUBIC FLUORITE-STRUCTURE OXIDES

Compound a n
TbO, 5.220

CmO, 5.372

AmO, 5.376

Pu0, 5.3960

CeOy 5.4110

U0, 5.4682

Pro, 5.4694

Pa0; 5.505

Tho, 5.5997




TABLE 12

HIGH-ABSORBANCE OXIDES

Compound n

MnO 2.2
Mn30y4 2.4
Zno 2.0
Ti0, 2.7
Fe,03 2.8
Mn;04 2.7
Cusy0 2.7
Cu0 2.4
Fe304 2.2
V50g 2.1

CO3O4 lo4
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which are often used to control sintering, segregated to the
grain boundaries. High absorption occurs in sintered alumina due
to residual poronsity, grain-boundary contamination, and second-
phase scattering. Best results were obtained using MgF as a
dopant. The effect of stoichiometry on a common companion of
alumina in glasses, Si0,, was reported by 2Zuther, et al. who
studied the glass system Ga203-Ge02-Ag?os,56 The refractive
indices of the monoclinic materials PbGeOj3 and PbSiOj3 were
measured by Sugi et al,57 and are given in Table 13. These ani-
sotropic materials have similar refractive indices with high
dispersion. The refractive indices of oxide films on Ge and GaAs
are reported respectively by Nazarenko and Rastrenenko58 ang Umeno,
et al.59 Finally, Ovcharenko and Yakhkind looked at several oxide
additives in tellurite glasses.®0 Their results are presented in
Table 14, which gives an extrapolation of the effective indices
of these additives to a 100% concentration. The refractive index
of Te0,-BaO is 2.0976, and that of TeO0,-WO3 is 2.1939. We take
the coexistence of oxides and tellurides as a transition to our

next paragraph, the chalcogenides.

7.4 Chalcogenides

The II/VI compounds are a well understood and well developed
class of materials in which we make the transition from oxides to
chalcogenides. This is because 2Zn0O and BeO have the wurtzite
structure, although their disparate respective lattice constants
of 3.25 and 2.69 angstroms make them unattractive candidates for
a solute system, and because the rocksalt structure contains both
oxides and chalcogenides. The wurtzite compounds are presented
in Table 15, and the rocksalt structured chalcogenides are given
in Table 16. Copper halides are also listed in Table 15. None
of the wurtzite systems appears attractive for low-defect solid
solutions, due to the incompatibility of their lattice parameters.

The same comment applies to the rocksalt structure chalcogenides.

ORI S

PR IR . SRS A Ny _.-.4_-“*‘- PP Cs ol ety T T T T e e e (T T T L e T LT T P R S T i S
Anbatnbadeienindunbndefod oo dodnd ol PR PR R T W P Eadoata o doabol oo ianasan




TABLE 13

PbGe03 and PbSiO,

PbGeO, PbSi0; ;;i
a 11.57 o
b 7.32 g
c 12.62
ne* 2.0337 1.947
ay* 2.0411 1.961
ne* 2.0506 1.968

*Taxken at 579.1 nm. These materials have high dispersion.




TABLE 14

OXIDES IN TELLURITE GLASSES

Additive n

La,03 1.53 1.73
Gd,03 1.62 1.62
Y503 1.56
Cdo 1.57 1.86 o
Sc,03 1.48 1.51 L
Zno 1.61 1.63 e
Ga,03 1.48 NS

As 03 1.82 1.82
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TABLE 15

Compound

Halides

CuH
CuCl
CuBr
Cul
AglI

Oxidas

BR20

ZnO
Chalcogenides

ZnS
MnS

ZnSe
MnTe
MnSe

cas

ZnTe
Cdse
MgTe

WURTZITE STRUCTURE

2.893
3.91
4.06
4.31
4.580

2.698

3.250

3.811
3.976
3.98
1.087
4.12

4.135

4.27
4.30
4.52

4.614
6.42
6.66
7.09
7.494

4.380

5.207

6.234
6.432
6.53
6.701
6.72

6h.749

6.99
7.02
7.33

£ o ‘-U'r
4.4
3.0
381
3.7 407
5.9
5.6 228
235
6.2 171

574
583

305

214




Compound

MnS
cds
Cas
Pbs

SuSe

PbSe

SnTe

PbTe

AP WP e G

ROCKSALT

TABLE 16

a
5.22
5.516
5.639
5.9436
6.020
6.124
6.313

6.454

FORPIPACINE DR I P DU Pt P PO DR
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Another re=ason for passing over these materials is that ZInSsS, O
s

Ins-Se, CdS, MnS, and MnSe can assume both the wurtzite and NG
n..‘..

zinchlende structures., CdS and MnS can have the rocksalt struc- Salst
ture as well. Furthermore, many II/VI materials do not resist

molsture well,

Among the zincblende structure chalcogenides, HgyCd|_4Te
appears to be the most likely candidate system, as can be seen
f£rom Table 17. This system is especially attractive due to the -
high and very different dielectric constants for HgTe and CdTe
respectively of 14.0 and 7.3. In fact, HgyCd;_ 4 Te is known to
form a continuous solution as a function of x. The x value must
be kept above 0.15 to maintain a bandgap. The reflection
spectrum of H3 75Cd_,gTe was taken by Kavalyauskas et al.bl
These authors obtained a dielectric constant of 12 for this solu-
tion. The refractive index of ZnS as a function of temperature
is given by Thompson et al.f2 golutions of cubic CdSej_x+
Cdi-xMnySe, and ZnS,Sej_, were investigated respectively by

Kainthla et al.®3 antoszewski and pecold,®4 and by Mach
sr 11,55

Klassen and Ossipyan looked at the effect of disloca-

-

“i2ns on Cds and CdSe. They found that the inhomogeneities 3}:

caused by dislocations caused focusing and channeling of light :j$
L

5assing through these materials.b® AN

¥

Many transition metal/dichalcogenide compounds take the
pyrite structure (see Table 18). From Table 18 we see that

RuyOsy_y solutions with either S, Se, or Te should make excellent

lattice matches., Infrared measurements on several pyrites were ,E‘
reported by Anastassakis and Perry.®7 vyerble and Humphrey68 _
measured the infrared and Raman spectra of MnS, and Ushioda l“lf

reported on Raman measurements on FeS,.69

One reason why the chalcogenides can be interesting is that .
sulfur and selenium have similar crystal radii, of 1.84 and 1.938

angstroms respectively, so that several solutions of S ,Se,;_, are

100
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TABLE 17

ZINCBLENDE OR SPHALERITE STRUCTURE CHALCOGENIDES

Compound a € €g w wr,
BeS 4.85
4 BeSe 5.07
ZnS 5.409 5.14 8.0 282 352
h BeTe 5.54
MnS 5.600
ZnSe 5.668 5.90 8.3-9.1 207 246
MnSe 5.82
cds 5.818 5.63 3
HgS 5.85 30.6
HgSe 6.084 25.6
ZnTe 6.089 7.28 10 178 206
Cdse 6.16 6.38
HgTe 6.429 14.0
CdTe 6.480 7.3 140 171
CuCl 5.406 3.6 7.3 155 198
CuBr 5.690 4.4
Cul 6.043 5.2
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TABLE 18

PYRITE STRUCTURE CHALCOGENIDES

Compound a €w
Fes, 5.407 21.3
CoS, 5.52
RhS, 5.574
RuS, 5.59
0ss, 5.608
Cose, 5.859
RuSe, 5.921
OsSe, 5.933
NiSe, 5.960
RhSe, 5.99 - 6.00
MRS 5 6.101 6.07-6.14
RuTe 6.360
OsTe, 6.369
IrTe;, 6.411
RhTe, 6.441
102




known. In addition, some chalcogenides have large dielectric

constants. However, chalcogenides tend to have narrow bandgaps,
and are best suited for use in the infrared. Like the halides,
many chalcogenides form layered compounds with transition
metals.’0 These materials are discussed at length in Wieting and
Schluter.’! The materials are most commonly grown by halogen

72 often it is possible to grow large single

vapor transport.
crystals, one exception being WS;. Many of these layered com-
pounds are metals, but several are semiconductors. One of the
better known layered structures occurs for GaS and GaSe. Data on
these compounds are given in Table 19, where N refers to the
number of layers within 1 1nii cell. We see that GaS and GaSe do
not have either commensurate lattice parameters or particularly
interesting refractive indices. GaSe is an electro-optic
material; its electro-optic properties have been measured by
Sokolov and Subashiev.’3 The temperature dependence of the
refractive index of GaSe was investigated by Antonioli, et al.74
The dispersion in GaSe is very high, with a refractive index that
varies from about 2.73 at 0.5 eV to 3.10 at 2.5 ev.74
Reflectivity measurements on GaS,Se,_, crystals are presented in
Reference 75. Other optical measurements on GaSe are given in

References 76-80.

The most common layered structure formed by the transition
metal dichalcogenides is the CdI, structure shown in Figure 7.la.
Many of these compounds are metals, hut except for SnSe,, the
materials of Table 20 are semiconductors. We see from Table 20
that solutions of Hf/Sn/2r in either sulfur or selenium are
possibilities for high-index devices with a potential for modula-
tion of over 30%. The sulphides are particularly attractive,
since they have wider bandgaps, a much closer (1%) match in lat-
tice constants, and do not contain any metals. Infrared reflec-
tance measurement on many of these compounds were made by

Lucovsky et al.®l Optical and U.V. measurements on Sn3e, and
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TABLE 19

Gas STRUCTURE
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TABLE 20

cdis STRUCTURE - CHALCOGENIDES

Compound a c

HES, 3.635 5.837

SnS; 3.639 5.868

ZrS, 3.662 '5.813
SnSSe 3.716 6.050
HfSe, 3.748 6.159
lrSe, 3.771 6.138-.149

SnSe2 3.811 6.137
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snS, were made by Bertrand et al.82 other papers on the
optical properties of SnS; and SnSe, are given in references 83

and 31%. Isomaki and Boehm have made calculations on the

P N
v

" dielectric properties of 2rS,.85

St b

..
o,
.
.
(3

The best known transition metal dichalcogenide, MoS,, -
ba2longs to the octehedrally coordinated family listed in Table
21, and depicted in Figure 7.lb. These materials have large -
dielectric constants (7-24), albeit narrow bandgaps. As in the
case of the 1T-CdI,; materials, we find that a match of lattice
constants separates the Mo,W,_, solutions into sulphides and

selenides. Of these, the sulphides are harder to grow.

Beal and Liang have made reflectivity measurements on WSe,
and WS,.36 The optical properties of MoSe,, which is relatively
easy to grow, were measured by Evans and Hazelwood.B37 Other
relevant papers are references 88 and 89. We note that many
transition metal trichalcogenides also take layered structures.
Zwick, et al. made Raman measurements on er3, ZrSe3, ZrTe3, and
HESe3.90 The infrared spectrum of HES3 was measured by Jandl
and Deslandes.9%l

The system Bi;Te;_,Se, also has a layered structure. It has
a very high dielectric constant (20-40) in the region between 2
and 10 ym, where it has an extinction coefficient of less than
one um.%2 Orpiment, Hs,S3, and its companion, As,Sej, may
crystallize in a layered form, or can form glasses. Most work on
these materials has been done on the glass phase. These glasses
have good mechanical strength and chemical stability. However,
their range of refractive indices is small (n varies from 2.4 to

2.7), and their ability to form both a glass and a crystalline

phase suggests that scattering from defects may be a problem. s

. . . . P
Butterfield?3 started the optical properties of 40 thin films 53?
of these glasses. He attributed the dominant scattering mechan- o
ism to void and oxygen impurities. Kanchiev and Kokorina concur .3

B
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Compound

M052
w52

MoSe)
WSez

TABLE 21

MOLYBDENITE STRUCTURE

a Cc
3.16 12.30
3.15 12.36
3.29 T 12.93
3.29 12.97

€

10 (2.2um)
7-8

24
7.3
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that oxygen impurities are a serious problem, as is water.9%4

They suggest distillation as a means of removing these impuri-

" . W

1
3
»

ties. Young?5:9%96 f£inds that the absorption and reflectivity of

As,S3 films depend on surface preparation, especially the finish Sif
and the temperature at which the films were deposited. Other A
oI

papers on the optical properties of these glasses are given in

references 97-107. GeS, can also take both a glassy and a

. .'_..
.“,4 ..

crystalline form, and is sometimes wused to form glasses and

As,S3. Raman studies on GeS, have been made by Nemanich.107,108 ;}?
The single sulphides and selenides of Ge and Sn have an ol
orthorhombic structure (Table 22). These materials do not appear ggf

to be well suited for continuously modulated optical devices.

Their optical properties are reported in references 109-116.
H Miscellaneous references on chalcogenide compounds are given in ij

references 117-121. }ﬂf

Qur remaining structure for chalcogenide compounds is the
chalcopyrite structure, This structure is shared by some arsenic Rty

compounds and thus forms a bridge with the Group V materials. i

The chalcopyrites, listed in Table 23, are birefringent and

difficult to grow in large crystals. From Table 23 we see that

there are four closely matched systems, all of which contain W

¥
either Cu or Ag, and most of which contain either Al or Ga. Most L
of these materials are selenides. Of the four systems, fi?

CuAl,Gaj_4S,, CuAl,Gaj;._y Se,, have very closely matched lattice

parameters. The In(CuSe,),(AgS;)j_.x and Al(AgSe,),(CuTey);_,
systems are likely to form localized compounds such as InCuS, ~5if
or AlCuSe,, which would have dissimilar lattice parameters. The Eﬁﬁ

Raman and infrared spectra of AgGaS, was taken by Holah et

al.122 AgGaS, has a direct band gap of 2.75 eV, and a large
nonlinear optical coefficient.l23 Many chalcopyrites also take
the zinc-blend structure. The (CulnSej);_, - (22ZnSe), system was

studied by Gan et al., in this context.l24 The reflectivity of

a number of chalcopyrites was measured by Rife et al.l25
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TABLE 22

GeSe STRUCTURE

Compound a b
GeSe 4.40 11.82
sSnS 4.33 11.18
) GeS 4.30 10.44
Snse 4.46 | 11.57
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TABLE 23 RS

CHALCOPYRITES

'-F,.s‘

COMPOUND a c s

'f\q

%

Cuals, 5.312 10.42 <

CuGas;, 5.349 10.47 g

Culns, 5.517 11.06 e

. _.:-,‘A

CuTls;, 5.580 11.17 o

| CualSe, 5.606 10.90 B
CuGase; 5.607 10.99 DAY

ZnSiAs; 5.608 ' 10.89

i AgFesS, 5.66 10. 30 o
| 3
ZnGeAs, 5.670 11.153 o

AgAlS; 5.695 10.26 -

AgGas, 5.743 10.26 S

I Culnse; 5.773 11.55 E
AgIns) 5.816 11.17 S

CuTlse, 5.832 11.63 !
CdGeAs, 9.942 11.224 oy
I ¥
AgAlse, 5.956 10.75 o

CuldlTe, 5.964 11.78
AgGase, 5.973 10.88 T
. CuGaTe) 5.994 11.91 S
| E

AgInSe, 6.090 11.67 '

: CdSnas, 6.092 11.922

; CulnTe, 6.167 12.34 O
' e
' AgGaTe; 6.288 11.94 RN
: T
AgInTep 6.406 12.56 e

. N
e
110 R
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7.5 Group V Compounds

The group V materials have strongly covalent bonds, and in
general exhibit narrow bandgaps. Consequently they are of
interest primarily for infrared devices. The nitrogen compounds
tend to have bond lengths that are not well matched to those of
P, As, or Sb, so we will concentrate our attention on the latter
chemicals, and defer a discussion of nitrogen compounds to the

end of this paragraph.

By far the most well developed and most commonly used group
V materials are the III-V compounds with the zincblende
structure. Simply by virtue of current materials processing
capability, these compounds deserve attention, and are listed in
Table 24, in which are included the closely related materials Si
and Ge. These materials do suffer from generally narrow
bandgaps and low melting temperatures. However, they can be
grown on a large scale with a very low level of defects. From
Table 24 we see that an Al,Gay_, solution with either P, As, or
Sb will give a good lattice match, albeit with a variation in
dielectic constant of only about 20%. Continuous modulation of
these materials should reduce the bandbending associated with
interfaces.26 1t thus seems that these materials are attractive
for narrow-band ignition filters, provided that input power
levels are not too high. References 127-130 concern the optical

properties of some of these materials.

Our final group of materials are the nitrides with the 2ZnO
structure (see Table 25). We expect these nitrides to have wider
bandagaps and higher melting points than the zincblende compounds
of Table 24. It appears that the Ga,Al;_N and Nb,Taj_xN systems

are good candidates for optical devices.
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TABLE 24

III/V COMPOUNDS - ZINCBLENDE STRUCTURE

COMPOUND a n o €gq 2
.6 5 (em~ 1)
SiC 4,348 6.7 10.2 793 .
3p 4.538 10.2
Si 5.4307 3.5 1.7 520 R
GaP 5.4505 3.46 2.94 8.5 10.18 366
Alp 5.451 7.6 440
Alas 5.h2 9.0 361
GaAs 5.6537 10.9 13.13 269
Ge 5.6574 4.016 16 15.8 309
InpP 5.8687 3.44 3.08 9.6 12.37 304
InAs 6,036 4.17 3.46 12.3 14.6 219
GaSb 6.118 3.824 14.4 15.7 230
Alsh 6.1347 4.24 10.2 11.2 319
In3h 6.478 15.6 17.88 130
112
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COMPOUND

AlN
GaN

InN

NbN
TaN
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TABLE 25

Zn0O STRUCTURE NITRIDES

3.111 4.978 4
3.180 5.166 5

.
[¢ cle o]

3.533 5.693

3.017 5.580
3.05 4.94
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8. CONCLUSION

We now present the conclusions resulting from our literature
survey and preliminary analysis. Although he has not definiti-
vely proved all of these conclusions, the author believes that
they are valid over sufficiently general conditions to warrant

their entry in this report. We assert that:

. Stop and pass bands will be formed whenever the suscep-
tibility is periodically modulated. In fact a series of such
bands will occur as a function of the wave frequency. The band
structure will become more sharply defined as the number of
repeat regions, or unit cells, increases, and as the medium
approaches absolute periodicity. It is likely that the sharpness
of the band edges will be enhanced if the imaginary part of the

material susceptance is minimized.

° The centers of successive stop bands occur at wavelengths
for which the optical depth of the medium taken over a unit cell
distance is an integral number of half wavelengths, i.e., the

phase angle is equal to r, or

d
ko[ dx n(x) = . (8.1)
o
Thus the location of the gaps, or stop bands is determined pri-

marily by the dimension of the unit cell, d, and the mean value

of the refractive index, n(x), rather than the shape of the modu-

lation profile.

) The width of the band gaps, or stop bands increases as the
relative modulation in the refractive index, An/n, increases.
For small modulations, in most cases the widths of stop bands of
a given order are roughly proportional to components of the

Fourier transform of the modulation profile of similar order.
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° The Jdegree of attenuation of 3 wave with a frequency within e
a stop hand increases toward the middle of the bhand. The amount fﬁt’
of attenuationn is proportional to an/n. If the number of repeat -
S e
. . . . . : . A
units (unit cells) in the filter is sufficiently large, such a el

wave will not propagate through the filter at all, it will be
totally stopped. The attenuation of the wave is not due to
ahsorption, it is due to reflection, i.e., the stop bands

correspond to reflection bands.

. Complex modulation profiles in the medium susceptance will -
lead to "band splitting"--the formation of new stop bands within iiEi
what would otherwise be pass bands. Consequently several stop RS

bands can be located at arbitrary frequencies within say, one

octave of the first stop band by appropriate design of the modu- ;i;_

. . . . . S
lation profile. The locations and widths of the various stop ‘gi
bands will be related to the filter parameters in the same manner :-ﬂ;

as for a single stop band, If it is desired to locate stop bands

at arbitrary intervals over a multioctave region, then it will fﬂﬂ;

probably be necessary to put up with additional "ghost" stop bands. i!g

° As n increases, the acceptance angle for the filter will 31;:
also increase. Eéft
° Inless performance is desired over many octaves, there is no E?;;
apparent reason to favor one type of unit length modulation pro- fx'

file (e.g., a step function as a sinusoidal, parabolic, or ‘ﬁ,ﬂ
Gaussian profile) over another. Details of the modulation pro- j%ﬁ?
file only become significant in the upper level stop, or reflec- 33?$
tion bands. There may be reasons based on materials for choosing =ffF
a ygiven type of modulation profile. For example, it may be that ?%f

impurities will aggregate at discontinuities. However, our ana- :ffi
lysis in Paragraph 2.2 suggests that even if such an aggregation LAY

were to occur, it would not affect the amount of absorption in most

cases. Some effect might be discernable at stop bands.

S

In addition, we have made a brief preliminary survey of At

Y

possible materials for graded-index optical devices. 1In our o
124 ité.

4

.yt e e - IR B T N T T e I Tt W DN '.'."'..*'.“.-'.""‘. < o
RO B I R N S Nl St N A SR S N ._.__'.\\_s B R A A A LY



L T R S B S S o Rt dhar dinrpnsudnr Sae o ous. o Lt
2 . . RN A A SN A S s i At SN A AR S A e e e e ond 2ous el o Y

analysis we assumed that a minimization of absorption was para-
mount, and accordingly sought systems that offered a hope of

achieving a low density of defects and an infrared spectrum rela-

tively free of absorption bands. This implied a choice of opti-
cal materials with simple molecular formulas, materials that
crystallize with identical structures and closely matched lattice
parameters, and materials that are known to crystallize in only
one form. 1In particular, we noted that many potential candidate
materials are layered compounds. It may be possible to use
layered materials with dissimilar chemical formulas in adjacent
layers without introducing serious problems with interface

states.
8.1 Comments

The author is confident that an analytic description of a
filter behavior similar to that discussed in Sections 3-6 can be
extended to complex susceptibilities and three-dimensional
systems. Similar problems have been treated in three dimensions
in band theory, lattice dynamics, and the description of
microwave components. Step function modulations are the easiest
to analyze because the solutions are in terms of sines and
cosines, which are familiar, and can often be manipulated into
compact expressions. The analysis of a Rugate filter is much
less tractable. However, in many cases of interest, such as
sinusoidal modulation, closed form solutions should be
obtainable. Indeed, solutions to the Mathieu problem have been

known for over half a century.

Commonly, continuously modulated filters are approximated in
manufacture by stacking together a large number of very thin

layers, with flat index profiles across each layer and sharp

discontinuities between layers. Our analysis suggests that the
merit of this procedure is at best moot. This practice will

indeed jive a reasonable approximation of an arbitrary index pro-

125

e Lt e TN e At e e
. PO R T PP AT

. e PR
L PV, RO B PP A . )
B S S, LW SR TS L PSP PRSP .

o .o

.
IR
Yo LAY

O L e
et aSade £aa .




-
‘.'.A. oy
P AP B

< IF:

e e
A

PSS
224"

N TES Ty Y R

T

rn

ile over 3 limitad (one or two octave) freqguency range.
However, 1t introduces a very large number of discontinuiti=s,.
If these discontinuities do, in fact, result in deterioration of
rh2 mataerial properties, then these discontinuities are self
Jdefeating. They will alsn affact the structure of high-order
bands. Therefore if the higher-order band structure is impor-
tant, the use of thin layers will interfere with these upper-

level bands.

We note that both the width and the degree of attenuation
or r=flection in the stop or reflection bands scales as 2n/n.
This creates difficulties {f notch filters are desired., It
appears that the primary way out of this dilemma is te buili a
filter with many repeat distances, i.e., a very long filter. It
may also be possible ro achieve some design freedom by
prescribing profiles that have narrow potential wells (regions of

large susceptibility) separated by relatively wide distances.

8.2 Implications and Suggestions

On the basis of this interim survey the author concludes
that the choice of optimum filter materials and manufacturing
should he dominated by materials and manufacturing questions
ratner than by filter design criteria. The primary concern
should he to minimize intrinsic losses. This can be achieved by
selecting materials whose imaginary component of the refractive
index, n;, is small compared to the real component, n,., and by
minimizing local inhomogeneities which will add to losses, as
described in Paragraph 2.2. The second criteria should be tn
select a material that is immune to intense levels of signal
enerjy. This implies a low variation of n{(x) with temperature,
and a high melting or phase transition temperature. Comments on

nonlinear susceptibilities are beyond the scvope of this report.

In general, it will be desirable to adjust the widths of the

stop or reflection bands and to create multiple stop bands at
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ar>itrary freguencies. This will require tailor-made refraction
indices, which are achleved by appropriate solid solutions. If
inhomogeneities in the resulting material are to be minimized,
the constiruents of the solution should be as compatible
(mutually soluble) as possible. This suggests similar struc-

tures, chemical compositions, and bond lengths.

In summary, we helieve that optimum materials should have

the following properties:

e Amenability to manufacture with a low concentration of

defects
e dn/dT » O
e A high phase transition temperature

® Good solubility with other materials possessing a simi-
lar structure but as different a refractive index as

possible,

This interim report is by its very nature incomplete. If we
ar2 to obtain a reasonably complete analytic picture of maximum
filter design, several steps should be undertaken. We need to
make analytic calculations of the dependence of the imaginary

part of the wavenumber, k and the reflection bandwidth, Aw on

i
the relative modulation depth, An/n. These calculations should

he made for both the Kronig-Penney and the Mathieu problems, and the
respective results should be compared. The analytic calculations
should be augmented by numerical calculations, and should be
extended to include multiply periodic filters. We should also

make numerical comparisons between the Kronig-Penney and the Mathieu
contours in regard to their higher-order band structure and the

side lobes in their reflection bands.
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We should extand our calculation to include complex suscep-

ote

tibilities, 1including both analytic and numerical work.
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Formulations should be given for additional profiles, e.g., as
saw-o0th and parabolic profiles. In particular, we should

investigate the application of a Kramers-Kronig analysis to a

» 8ragg filter. The Kramers-Kronig relation is based solely upon
causality. Therefore it is reasonable to assume that it will 3
5 apply to the filters in question. However, since we get stnp Ky
' bands even with ideal materials that have purely real suscep- .

N Ty
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tibilities, the applicability of a Kramers-Kronig analysis is not

i

o

immediately obvious. Assuming that it does apply, it would be

-y

very us=2ful hoth in filter design and in reducing data on filters.

Finally, our analytic formulations should be extended to
thrze dimensions, particularly for the case of the Mathieu problem.
Such calculations can most readily be made in Cartesian coor-
dinates, but calculations in a cylindrical coordinate system
should also be attempted. If time permits, an analytic treatment

of the effect of terminations and interfaces should also be made.
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APPENDIX A

MATHEMATICAL UNDERPINNINGS OF WAVE PROPAGATION IN PERIODIC MEDIA

In this appendix we derive some of the equations which form
a basis for the discussion of Section 3. The fundamental pro-
perty that facilitates the description of this problem is that

the waves obey a second-order equation of motion,
p" + f(x)y ¢y =0 , {A.1)

in which no first derivative term appears. The second property
is that the response of the media to the wave is periodic along
the path of the wave. No other properties of the system need to
be involved in our discussion. Consequently our remarks apply to
many fields other than optics, including acoustics, lattice
vibrations, transmission line theory, waveguide theory, and the

band theory of solids. In Section 3 we use

2

_ 2 .2 _ .2
f(x) = kon (x) = koe(x) = k (x) . (A.2)

A.l Form for Transfer Matrix Elements

A second-order differential equation will have two indepen-
dent solutions for a given set of parameters (e.g., k and w).

Let these be 9 and ¢ 5. Then, from Equation (A.1l),

¢1l

o= - E(x) ¢4, (A.3)

1

and

Subtracting (A.4) from (A.3) we have

' = 0 LJ .
125 2% (A.5)

129

e s e e .- -
N Ban T e
W R T Wt

3 »

Py o~
S RN

e e e e -
A T O SR -

PO T S TS
.t Ty
IR R .

...........
" .




AnB Al A IO & Gt ot o0 o ML 0 Ear i a atdcat a  AAE £aa gl taliaaat Fe it i Bl A el B Ah d B T e ale Bhe 4o 80 aie ol Mhe Sk 4 by $he $40%ada]

N
"
o
o This is a key result, which as we see, stems from the form of
::-
s {A.1). Now
e (6,05 = 550%) = 6,05 + 6105 = 6,07 = ¢5%] (A.6)
I dx ‘7172 271 1*2 1¥2 271 271 : o
o
}ﬁ Consequently, we find
.‘t.
i‘ \ d -
& Ix (6105 - 9,03 =0 (A.7)
&; or £
3 ' - ! = t . .8
‘ ¢l¢2 ¢2¢l constant (A.8)
¥? The quantity in the l.h.s. of (A.8) is known as the Wronskian for
- (A.1). The critical point is that the Wronskian is independent of
5 the argument of ¢, and ¢,, as long as they are taken at the same
N point. ©Note that if we had an equation of the form
o P E Y (Yt + E(X) =0, (A.9)
=~ we would obtain the result
._:;. L. t = - . A
% ¢1¢2 ¢2¢1 exp [-fy(x)dx] (A.10)
-ﬁ: We would need to use (A.10) instead of (A.8) in regard to
) the full wave Equations (4.1) - (4.4).
We are now in a position to derive the expressions for the
%f matrix elements Equations {3.17) - (3.21). We begin with a
= general solution to (A.l), which is a linear combination of the
o independent solutions ¢; and ¢,:
.. y = Cl¢1 + C2¢2 . (A.11)
.
_ Differentiation of (A,11) yields
3
~ L '+ ' A.12
S 1 C1¢1 02¢2 ( )
'h,’
Y
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We may solve for c; and ¢, in (A.1l) and (A.12):

L] - ] = ] - []
Ve ~v'e, c1£¢1¢2 ¢2¢‘1‘) ' (A.13)
.
D
' - ] = " [] ] R .
Ve, - vel c (6,85 —ole]) (A.14)
o ~
D
L Since the ¢ coefficients are the quotients of Wronskians of (A.1),

they are indeed constants, by (A.8). We may therefore use the

argument at x' to for ¢y and ¢, in (A.1l1):
pi{x) = Cl(x')d?l()() + CZ(X‘)¢2(x) . (A.15)

Substituting from (A.13) and (A.14) in (A.15), we find

O =

vix) = Slu(xes(x") = v (x)eo,(x") e (x)

[or(x")e,(x") = y(x"e1(x")]e,(x) . (A.16)

+
e

We may r=2arrange the terms In (A.16) to obtain an expression for

p(x) in terms of y(x') and ¢'(x'):

-l 1 ' - L] [} 1
vix) == (e (e (x") = ¢ (08 (x")]w(x")

—

1 ) - ' ' ' .-

v = (o, x00 (x") =9 (x)e (x" )]y (x")

- ' '(x'), Q.E.D. : e

b vwix') + b y'(x"), Q.E.D (A.17)

A similar argument will give the expressions for the matrix ele- : 1

5 ments byy and by,. ;l 
i AL
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! A.2 Dispersion Relation

We now consider a different point of view, in which we
axprass y{x) in terms of its value at x', without regard to

3'(x'). We again use (A.ll), and write
p(x) = x(x,x")yp(x") (A.18)

Using (A.13), and letting yp(x') also be of ﬁhe form (A.11), there

will be some matrix A with elements.ajj, such that
91(x) = aj1é6;(x") + ajse5(x") (A.19)

and

¢2(.‘() 8214)1(7(') + 312¢2(X') . (A.20)

Equations (A.11) and (A.18)-(A.20) give us
p(x) = (cjag) + cpagy) ¢3(x") + (cragy + crapy) ¢p(x")
= X |:C1¢1(‘(l) +C2¢2(X')] . (A.21)

From (A.21) we obtain the matrix eigenvalue equation

ayj]p — A ayp
=0 , (A.22)
azl azy = A
or
kz - (a + a.. )\ + (a,,a - a a,,) =0 . (A.23)
11 22 11922 12 “21 *
A
We next show that A = 1., Note however, that since A = 1, we find
2 _
A - (a11 + a22)A +1=0 , (A.24)
132
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Tr[A] =X + A (A.25)

’

We now show that A = 1. We refer to the (constant) azldilp)

>
A

A

e
4
Ty o

Wronskian D. Using (A.19) and (A.20) we write

'y fy 2t A
)

4?
1’

;
‘s
-
b
.
.,

- [} - ]
. D ¢l(xw2(x) ¢l(xwz(x)
5 = [all¢l(x') + a12¢2(x')] [a21¢'1(x') + a22¢'2(x')]
- ] ’ + ' ' ' + ' .
[all«bl(x )+ a9 (x )] [a21¢1(x )+ a0, (x I, (A.26)
or
= - ' ' - ' ' ' . .
D (a),25, alzaZl)[¢l(x )¢2(x ) ¢1(x Yo, (x )] (A.27)
i.e.,
D =aD . (A.28)
Therefore
a8 =1 . (A.29)
The results we have derived have depended on the form (a.l)
for the wave equation, and in particular on the consequence (A.8).
However, the expression (A.1l8) is most useful when ¢ is periodic
in x. This will be the case when f(x) is periodic, as we now
show. We may construct a function A(x) such that
v (x) = A(x) elkx (A.30)
Substituting (A.29) in (A.1l) we find
A" + 2ikA' + [f(x) -~ k2] A =0 . (A.31)
o If f(x) 1s periodic with period d, then from (A.31) A must
be also. It is often useful to rewrite (A.30) in another form.
We let RGOS
.::,;.b.:.-_:
\"'.‘:-."\
x - x' =d , (A.32) RO
G,
Y
taly fy
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N O
D 3
L
- 2
o and obtain 7
b o 2
o .
S ¢ = A(x' + nd)exp [ikx' + iknd] (A.33) oy
4
22 = Ag(x')exp Ciknd] . (A.34) e
Si From (A.33) we see that by,
. ¢
. ' N
. A = eikd (A.35) 3
- in (A.18). Using (A.35) in (A.25), we have the dispersion rela- t
: tion "
!
N T.(A] = 2cos kd . (A.36) =
:' If there is a first derivative in the wave eqguation, leading to ?
o (A.10) instead of (A-8) we would find ;
3 ]
ey exp [F(x') - I (x)] / (A.37) "
-
2, where
. ’
- r 'Q
{; T = [ dx y(x) . (A.38) .
o o
o . . . 7
Equations (A.11)-(A.23) would otherwise remain unchanged. >
o0 Equation (A.24) would now become f
;:jE A2 - (ay] + agp)r + exp [T(x') - T(x)] =0 (A.39)
3 - d
"~ In the case of Equations (4-1) and (4-4) we have Y3x ln €, so that ey
;{ the third term in (A-39) becomes e(x)/c{x'). .
e &
n" o7
; i~
s B
= 1.5, GPO: 646-066% "
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